The Mixed Procedure

Model Information

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Set</td>
<td>WORK.PERSON</td>
</tr>
<tr>
<td>Dependent Variable</td>
<td>cic</td>
</tr>
<tr>
<td>Covariance Structure</td>
<td>Variance Components</td>
</tr>
<tr>
<td>Subject Effect</td>
<td>pkdid</td>
</tr>
<tr>
<td>Estimation Method</td>
<td>ML</td>
</tr>
<tr>
<td>Residual Variance Method</td>
<td>Profile</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
<td>Model-Based</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
<td>Containment</td>
</tr>
</tbody>
</table>

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>131</td>
<td>200922 201800 201877 203328 204555 205758 206816 208280 208324 209281 213454 214376 215052 216086 220068 223343 223534 223635 224502 226640 229428 229733 230415 231719 234503 234650 234650 234650 234795 235752 236202 237192 239960 241501 242715 243560 243738 244111 244831 245990 246620 247880 248712 250286 255765 256171 258940 259940 263617 264225 264348 265171 268455 271043 271977 273303 273494 273536 273803 273934 275192 275687 275800 277490 278197 283722 283935 285601 286095 290336 292362 293317 293598 294105 294511 295106 295940 298515 299663 300641 300696 300911 301157 301372 303868 304860 306546 312317 313195 313307 313893 316110 318562 320182 320957 321611 323837 325290 327055 327325 327933 331318 333524 334672 336167 336843 337315 342131 343097 343233 354494 358230 359308 364664 367836 368973 369941 370942 371021 374068 374687 376004 376252 380166 380998 383193 383744 385151 386040 386488 386758 387658 392316 393936 394588 397661 397931</td>
</tr>
</tbody>
</table>

Dimensions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance Parameters</td>
<td>3</td>
</tr>
<tr>
<td>Columns in X</td>
<td>2</td>
</tr>
<tr>
<td>Columns in Z Per Subject</td>
<td>2</td>
</tr>
<tr>
<td>Subjects</td>
<td>131</td>
</tr>
<tr>
<td>Max Obs Per Subject</td>
<td>4</td>
</tr>
<tr>
<td>Observations Used</td>
<td>491</td>
</tr>
<tr>
<td>Observations Not Used</td>
<td>33</td>
</tr>
<tr>
<td>Total Observations</td>
<td>524</td>
</tr>
</tbody>
</table>

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 - Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>4562.47580832</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4297.82120188</td>
<td>0.00009847</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4297.64334257</td>
<td>0.00000107</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4297.64150940</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>pkdid</td>
<td>365.92</td>
</tr>
<tr>
<td>visc</td>
<td>pkdid</td>
<td>19.6124</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>186.63</td>
</tr>
</tbody>
</table>

Fit Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
<td>4297.6</td>
</tr>
<tr>
<td>AIC (smaller is better)</td>
<td>4307.6</td>
</tr>
<tr>
<td>AICC (smaller is better)</td>
<td>4307.8</td>
</tr>
<tr>
<td>BIC (smaller is better)</td>
<td>4322.0</td>
</tr>
</tbody>
</table>

Solution for Fixed Effects

| Effect | Estimate | Standard Error | DF | t Value | Pr > |t| |
|--------|----------|----------------|----|---------|-------|---|
| Intercept | 99.8518 | 1.9610 | 129| 50.92 | <.0001|
| visc | -0.8551 | 0.6727 | 127| -1.27 | 0.2061|
Solution for Random Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Participant/ID Number</th>
<th>Estimate</th>
<th>Std Err Pred</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>200922</td>
<td>8.709</td>
<td>7.9538</td>
<td>233</td>
<td>1.24</td>
<td>0.2158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>200922</td>
<td>7.7120</td>
<td>3.5031</td>
<td>233</td>
<td>2.20</td>
<td>0.0287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>201800</td>
<td>-21.5006</td>
<td>8.1266</td>
<td>233</td>
<td>-2.65</td>
<td>0.0087</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>201800</td>
<td>-3.7482</td>
<td>3.4580</td>
<td>233</td>
<td>-1.08</td>
<td>0.2795</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>201877</td>
<td>-18.8041</td>
<td>8.0775</td>
<td>233</td>
<td>-2.33</td>
<td>0.0208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>201877</td>
<td>-2.3821</td>
<td>3.4639</td>
<td>233</td>
<td>-0.69</td>
<td>0.4923</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>203328</td>
<td>-1.8301</td>
<td>8.2349</td>
<td>233</td>
<td>-0.22</td>
<td>0.8243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>203328</td>
<td>-0.7067</td>
<td>3.4168</td>
<td>233</td>
<td>-0.21</td>
<td>0.8363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>204555</td>
<td>-9.6016</td>
<td>8.0821</td>
<td>233</td>
<td>-1.19</td>
<td>0.2360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>204555</td>
<td>0.1819</td>
<td>3.4470</td>
<td>233</td>
<td>0.05</td>
<td>0.9580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>205758</td>
<td>-11.9125</td>
<td>8.0769</td>
<td>233</td>
<td>-1.47</td>
<td>0.1416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>205758</td>
<td>0.4168</td>
<td>3.4282</td>
<td>233</td>
<td>0.12</td>
<td>0.9033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>206816</td>
<td>10.9525</td>
<td>8.0726</td>
<td>233</td>
<td>1.36</td>
<td>0.1762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>206816</td>
<td>1.5533</td>
<td>3.4822</td>
<td>233</td>
<td>0.45</td>
<td>0.6560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>208324</td>
<td>8.0864</td>
<td>8.0723</td>
<td>233</td>
<td>1.00</td>
<td>0.3175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>208324</td>
<td>8.0064</td>
<td>3.4710</td>
<td>233</td>
<td>2.31</td>
<td>0.0220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>209281</td>
<td>21.0191</td>
<td>8.1145</td>
<td>233</td>
<td>2.59</td>
<td>0.0102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>209281</td>
<td>0.1630</td>
<td>3.5007</td>
<td>233</td>
<td>0.05</td>
<td>0.9629</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>213454</td>
<td>11.2299</td>
<td>8.1381</td>
<td>233</td>
<td>1.38</td>
<td>0.1689</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>213454</td>
<td>2.1166</td>
<td>3.4074</td>
<td>233</td>
<td>0.62</td>
<td>0.5351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>214376</td>
<td>11.7746</td>
<td>8.0938</td>
<td>233</td>
<td>1.45</td>
<td>0.1471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>214376</td>
<td>-1.8706</td>
<td>3.4834</td>
<td>233</td>
<td>-0.54</td>
<td>0.5918</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>215052</td>
<td>25.8528</td>
<td>8.5918</td>
<td>233</td>
<td>3.01</td>
<td>0.0029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>215052</td>
<td>1.4588</td>
<td>3.3789</td>
<td>233</td>
<td>0.43</td>
<td>0.6663</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>216086</td>
<td>-22.0739</td>
<td>8.0995</td>
<td>233</td>
<td>-2.73</td>
<td>0.0069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>216086</td>
<td>-4.8805</td>
<td>3.4800</td>
<td>233</td>
<td>-1.40</td>
<td>0.1621</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>220668</td>
<td>-26.8827</td>
<td>8.1142</td>
<td>233</td>
<td>-3.31</td>
<td>0.0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>220668</td>
<td>-4.1805</td>
<td>3.4366</td>
<td>233</td>
<td>-1.22</td>
<td>0.2250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>223343</td>
<td>11.8419</td>
<td>8.0914</td>
<td>233</td>
<td>1.46</td>
<td>0.1447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>223343</td>
<td>-3.6671</td>
<td>3.4287</td>
<td>233</td>
<td>-1.07</td>
<td>0.2859</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>223534</td>
<td>2.5869</td>
<td>8.2222</td>
<td>233</td>
<td>0.31</td>
<td>0.7533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>223534</td>
<td>-2.5712</td>
<td>3.9385</td>
<td>233</td>
<td>-0.65</td>
<td>0.5145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>223635</td>
<td>29.4010</td>
<td>8.2412</td>
<td>233</td>
<td>3.57</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|----|---------|------|---|
| visc | 223635 | 1.7365 | 3.2774 | 233| 0.53 | 0.5967|
| Intercept | 224502 | -10.5019 | 7.9425 | 233| -1.32 | 0.1874|
| visc | 224502 | 3.1200 | 3.4739 | 233| 0.90 | 0.3700|
| Intercept | 226640 | -4.2333 | 8.0815 | 233| -0.52 | 0.6009|
| visc | 226640 | 0.1431 | 3.4661 | 233| 0.04 | 0.9671|
| Intercept | 229428 | 2.5477 | 8.0695 | 233| 0.32 | 0.7525|
| visc | 229428 | -3.9634 | 3.4860 | 233| -1.14 | 0.2567|
| Intercept | 229733 | -23.1236 | 8.0754 | 233| -2.86 | 0.0046|
| visc | 229733 | -1.5825 | 3.3804 | 233| -0.47 | 0.6401|
| Intercept | 232174 | 18.2360 | 8.3386 | 233| 2.19 | 0.0297|
| visc | 232174 | 2.1556 | 3.8642 | 233| 0.56 | 0.5775|
| Intercept | 234053 | 24.3129 | 8.0558 | 233| 3.02 | 0.0028|
| visc | 234053 | -1.4999 | 3.4836 | 233| 0.43 | 0.6672|
| Intercept | 234650 | 12.3188 | 8.0143 | 233| 1.54 | 0.1256|
| visc | 234650 | 0.1804 | 3.4818 | 233| 0.05 | 0.9587|
| Intercept | 234795 | 21.4886 | 9.7041 | 233| 2.21 | 0.0278|
| visc | 234795 | 2.3056 | 3.5407 | 233| 0.65 | 0.5156|
| Intercept | 235752 | 1.4559 | 8.2721 | 233| 0.18 | 0.8604|
| visc | 235752 | 0.5475 | 3.5044 | 233| 0.16 | 0.8760|
| Intercept | 236202 | -6.5499 | 8.0695 | 233| -0.81 | 0.4178|
| visc | 236202 | -2.0773 | 3.4323 | 233| -0.61 | 0.5456|
| Intercept | 237192 | -3.7821 | 8.1000 | 233| -0.47 | 0.6410|
| visc | 237192 | 1.2850 | 3.4322 | 233| 0.37 | 0.7084|
| Intercept | 239960 | -20.6987 | 8.1370 | 233| -2.54 | 0.0116|
| visc | 239960 | -1.6688 | 3.3732 | 233| -0.49 | 0.6213|
| Intercept | 241501 | 16.5069 | 8.2124 | 233| 2.01 | 0.0456|
| visc | 241501 | 0.5914 | 3.1425 | 233| 0.19 | 0.8509|
| Intercept | 242715 | 3.5277 | 8.1482 | 233| 0.43 | 0.6655|
| visc | 242715 | 0.8046 | 3.4256 | 233| 0.23 | 0.8145|
| Intercept | 243560 | -1.6101 | 8.1012 | 233| -0.20 | 0.8426|
| visc | 243560 | 2.1378 | 3.4562 | 233| 0.62 | 0.5368|
| Intercept | 243738 | -14.7003 | 8.0592 | 233| -1.82 | 0.0694|
| visc | 243738 | -1.1704 | 3.4833 | 233| -0.34 | 0.7372|
| Intercept | 244111 | 18.4773 | 8.1593 | 233| 2.26 | 0.0245|
| visc | 244111 | -0.6456 | 3.3343 | 233| 0.19 | 0.8466|
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|-------|---|
| Intercept | 244831 | 12.0548 | 8.1678 | 233 | 1.48 | 0.1413 |
| visc | 244831 | 2.4964 | 3.4806 | 233 | 0.72 | 0.4740 |
| Intercept | 245990 | 22.9750 | 8.1117 | 233 | 2.83 | 0.0050 |
| visc | 245990 | 9.0587 | 3.2941 | 233 | 2.75 | 0.0064 |
| Intercept | 246620 | 7.3146 | 8.1832 | 233 | 0.89 | 0.3723 |
| visc | 246620 | 1.2637 | 3.4229 | 233 | 0.37 | 0.7123 |
| Intercept | 247880 | 20.9017 | 8.1612 | 233 | 2.56 | 0.0111 |
| visc | 247880 | -1.0985 | 3.3378 | 233 | -0.33 | 0.7424 |
| Intercept | 248712 | 13.8855 | 8.2001 | 233 | 2.83 | 0.0050 |
| visc | 248712 | 9.0587 | 3.2941 | 233 | 2.75 | 0.0064 |
| Intercept | 246620 | 7.3146 | 8.1832 | 233 | 0.89 | 0.3723 |
| visc | 246620 | 1.2637 | 3.4229 | 233 | 0.37 | 0.7123 |
| Intercept | 247880 | 20.9017 | 8.1612 | 233 | 2.56 | 0.0111 |
| visc | 247880 | -1.0985 | 3.3378 | 233 | -0.33 | 0.7424 |
| Intercept | 248712 | 13.8855 | 8.2001 | 233 | 2.83 | 0.0050 |
| visc | 248712 | 9.0587 | 3.2941 | 233 | 2.75 | 0.0064 |
| Intercept | 246620 | 7.3146 | 8.1832 | 233 | 0.89 | 0.3723 |
| visc | 246620 | 1.2637 | 3.4229 | 233 | 0.37 | 0.7123 |
| Intercept | 247880 | 20.9017 | 8.1612 | 233 | 2.56 | 0.0111 |
| visc | 247880 | -1.0985 | 3.3378 | 233 | -0.33 | 0.7424 |
| Intercept | 248712 | 13.8855 | 8.2001 | 233 | 2.83 | 0.0050 |
| visc | 248712 | 9.0587 | 3.2941 | 233 | 2.75 | 0.0064 |
| Intercept | 246620 | 7.3146 | 8.1832 | 233 | 0.89 | 0.3723 |
| visc | 246620 | 1.2637 | 3.4229 | 233 | 0.37 | 0.7123 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|-------|---|
| visc | 271662 | -0.4796 | 4.3088 | 233 | -0.11 | 0.9115 |
| Intercept | 271664 | 15.3280 | 8.1629 | 233 | 1.88 | 0.0617 |
| visc | 271684 | 0.1401 | 3.4130 | 233 | 0.04 | 0.9673 |
| Intercept | 273214 | 18.9258 | 7.9278 | 233 | 2.39 | 0.0178 |
| visc | 273214 | 0.000391 | 3.5427 | 233 | 0.00 | 0.9999 |
| Intercept | 273225 | -25.8435 | 9.0021 | 233 | -2.87 | 0.0045 |
| visc | 273225 | -2.5929 | 3.4509 | 233 | -0.75 | 0.4532 |
| Intercept | 277490 | -15.9012 | 8.1186 | 233 | -1.96 | 0.0514 |
| visc | 273214 | 0.1401 | 3.4130 | 233 | 0.04 | 0.9673 |
| Intercept | 273214 | -25.8435 | 9.0021 | 233 | -2.87 | 0.0045 |
| visc | 273225 | -2.5929 | 3.4509 | 233 | -0.75 | 0.4532 |
| Intercept | 277490 | -15.9012 | 8.1186 | 233 | -1.96 | 0.0514 |
| visc | 273214 | 0.1401 | 3.4130 | 233 | 0.04 | 0.9673 |
| Intercept | 273214 | -25.8435 | 9.0021 | 233 | -2.87 | 0.0045 |
| visc | 273225 | -2.5929 | 3.4509 | 233 | -0.75 | 0.4532 |
| Intercept | 277490 | -15.9012 | 8.1186 | 233 | -1.96 | 0.0514 |
| visc | 273214 | 0.1401 | 3.4130 | 233 | 0.04 | 0.9673 |
| Intercept | 273214 | -25.8435 | 9.0021 | 233 | -2.87 | 0.0045 |
| visc | 273225 | -2.5929 | 3.4509 | 233 | -0.75 | 0.4532 |
| Intercept | 277490 | -15.9012 | 8.1186 | 233 | -1.96 | 0.0514 |
| visc | 273214 | 0.1401 | 3.4130 | 233 | 0.04 | 0.9673 |
| Intercept | 273214 | -25.8435 | 9.0021 | 233 | -2.87 | 0.0045 |
| visc | 273225 | -2.5929 | 3.4509 | 233 | -0.75 | 0.4532 |
| Intercept | 277490 | -15.9012 | 8.1186 | 233 | -1.96 | 0.0514 |
| visc | 273214 | 0.1401 | 3.4130 | 233 | 0.04 | 0.9673 |
| Intercept | 273214 | -25.8435 | 9.0021 | 233 | -2.87 | 0.0045 |
| visc | 273225 | -2.5929 | 3.4509 | 233 | -0.75 | 0.4532 |
| Intercept | 277490 | -15.9012 | 8.1186 | 233 | -1.96 | 0.0514 |
| visc | 273214 | 0.1401 | 3.4130 | 233 | 0.04 | 0.9673 |
| Intercept | 273214 | -25.8435 | 9.0021 | 233 | -2.87 | 0.0045 |
| visc | 273225 | -2.5929 | 3.4509 | 233 | -0.75 | 0.4532 |
| Intercept | 277490 | -15.9012 | 8.1186 | 233 | -1.96 | 0.0514 |
| visc | 273214 | 0.1401 | 3.4130 | 233 | 0.04 | 0.9673 |
| Intercept | 273214 | -25.8435 | 9.0021 | 233 | -2.87 | 0.0045 |
| visc | 273225 | -2.5929 | 3.4509 | 233 | -0.75 | 0.4532 |
| Intercept | 277490 | -15.9012 | 8.1186 | 233 | -1.96 | 0.0514 |
| visc | 273214 | 0.1401 | 3.4130 | 233 | 0.04 | 0.9673 |
| Intercept | 273214 | -25.8435 | 9.0021 | 233 | -2.87 | 0.0045 |
| visc | 273225 | -2.5929 | 3.4509 | 233 | -0.75 | 0.4532 |
| Intercept | 277490 | -15.9012 | 8.1186 | 233 | -1.96 | 0.0514 |
| visc | 273214 | 0.1401 | 3.4130 | 233 | 0.04 | 0.9673 |
| Intercept | 273214 | -25.8435 | 9.0021 | 233 | -2.87 | 0.0045 |
| visc | 273225 | -2.5929 | 3.4509 | 233 | -0.75 | 0.4532 |
| Intercept | 277490 | -15.9012 | 8.1186 | 233 | -1.96 | 0.0514 |
| visc | 273214 | 0.1401 | 3.4130 | 233 | 0.04 | 0.9673 |
Solution for Random Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Participant/ID Number</th>
<th>Estimate</th>
<th>Std Err</th>
<th>Pred</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>295940</td>
<td>-11.0429</td>
<td>8.0303</td>
<td>233</td>
<td>-1.38</td>
<td>0.1704</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>295940</td>
<td>-1.2493</td>
<td>3.4390</td>
<td>233</td>
<td>-0.36</td>
<td>0.7167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>298515</td>
<td>-16.6225</td>
<td>8.0492</td>
<td>233</td>
<td>-2.07</td>
<td>0.0400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>298515</td>
<td>-6.0768</td>
<td>3.4702</td>
<td>233</td>
<td>-1.75</td>
<td>0.0812</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>299663</td>
<td>-17.6211</td>
<td>8.1477</td>
<td>233</td>
<td>-2.16</td>
<td>0.0316</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>299663</td>
<td>-3.8204</td>
<td>3.3649</td>
<td>233</td>
<td>-1.14</td>
<td>0.2574</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>300641</td>
<td>6.7530</td>
<td>8.0520</td>
<td>233</td>
<td>0.84</td>
<td>0.4025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>300641</td>
<td>1.5445</td>
<td>3.4615</td>
<td>233</td>
<td>0.45</td>
<td>0.6559</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>300696</td>
<td>-3.2218</td>
<td>8.0883</td>
<td>233</td>
<td>-0.40</td>
<td>0.6908</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>300696</td>
<td>0.2205</td>
<td>3.4473</td>
<td>233</td>
<td>0.06</td>
<td>0.9491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>300911</td>
<td>-8.5433</td>
<td>8.1830</td>
<td>233</td>
<td>-1.04</td>
<td>0.2976</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>300911</td>
<td>-0.9976</td>
<td>3.9562</td>
<td>233</td>
<td>-0.25</td>
<td>0.8111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>301157</td>
<td>-15.3103</td>
<td>8.0656</td>
<td>233</td>
<td>-1.90</td>
<td>0.0589</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>301157</td>
<td>0.6296</td>
<td>3.4685</td>
<td>233</td>
<td>0.18</td>
<td>0.8561</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>301372</td>
<td>-1.1176</td>
<td>8.0461</td>
<td>233</td>
<td>-0.14</td>
<td>0.8897</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>301372</td>
<td>-2.9140</td>
<td>3.4912</td>
<td>233</td>
<td>-0.83</td>
<td>0.4047</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>303868</td>
<td>8.2291</td>
<td>8.1087</td>
<td>233</td>
<td>1.01</td>
<td>0.3112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>303868</td>
<td>2.8688</td>
<td>3.4253</td>
<td>233</td>
<td>0.84</td>
<td>0.4031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>304860</td>
<td>-10.4506</td>
<td>8.0485</td>
<td>233</td>
<td>-1.30</td>
<td>0.1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>304860</td>
<td>-2.8796</td>
<td>3.4771</td>
<td>233</td>
<td>-0.83</td>
<td>0.4084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>306546</td>
<td>-12.7140</td>
<td>8.1159</td>
<td>233</td>
<td>-1.57</td>
<td>0.1186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>306546</td>
<td>4.8926</td>
<td>3.4462</td>
<td>233</td>
<td>1.42</td>
<td>0.1570</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>312317</td>
<td>-3.3277</td>
<td>8.0421</td>
<td>233</td>
<td>-0.41</td>
<td>0.6794</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>312317</td>
<td>-0.05770</td>
<td>3.4970</td>
<td>233</td>
<td>-0.02</td>
<td>0.9868</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>313195</td>
<td>1.8383</td>
<td>8.1056</td>
<td>233</td>
<td>0.23</td>
<td>0.8208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>313195</td>
<td>-1.1975</td>
<td>3.4273</td>
<td>233</td>
<td>-0.35</td>
<td>0.7271</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>313307</td>
<td>-16.9423</td>
<td>8.0713</td>
<td>233</td>
<td>-2.10</td>
<td>0.0369</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>313307</td>
<td>0.1928</td>
<td>3.4667</td>
<td>233</td>
<td>0.06</td>
<td>0.9557</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>313893</td>
<td>8.2232</td>
<td>8.0725</td>
<td>233</td>
<td>1.02</td>
<td>0.3094</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>313893</td>
<td>3.7648</td>
<td>3.4790</td>
<td>233</td>
<td>1.08</td>
<td>0.2803</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>316110</td>
<td>7.2520</td>
<td>8.1923</td>
<td>233</td>
<td>0.89</td>
<td>0.3769</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>316110</td>
<td>4.1490</td>
<td>3.9468</td>
<td>233</td>
<td>1.05</td>
<td>0.2942</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>318562</td>
<td>16.0459</td>
<td>8.0678</td>
<td>233</td>
<td>1.99</td>
<td>0.0479</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>318562</td>
<td>-2.6328</td>
<td>3.5073</td>
<td>233</td>
<td>-0.75</td>
<td>0.4536</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>320182</td>
<td>4.3478</td>
<td>8.1155</td>
<td>233</td>
<td>0.54</td>
<td>0.5926</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|------|----|
| visc | 320182 | -2.8654 | 3.4397 | 233 | -0.83 | 0.4057|
| Intercept | 320957 | 18.5730 | 8.0585 | 233 | 2.30 | 0.0221|
| visc | 320957 | 3.3264 | 3.4700 | 233 | 0.96 | 0.3387|
| Intercept | 321611 | 0 | 19.1291 | 233 | 0.00 | 1.0000|
| visc | 321611 | 0 | 4.4286 | 233 | 0.00 | 1.0000|
| Intercept | 323837 | 28.4015 | 8.1529 | 233 | 3.48 | 0.0006|
| visc | 323837 | -11.3558 | 8.0497 | 233 | -1.41 | 0.1597|
| Intercept | 325290 | 1.3248 | 3.4709 | 233 | 0.38 | 0.7030|
| Intercept | 327055 | -15.7985 | 8.0634 | 233 | -1.96 | 0.0513|
| visc | 327055 | 1.8930 | 8.0350 | 233 | 0.24 | 0.8140|
| Intercept | 327325 | 11.8450 | 8.1134 | 233 | 1.46 | 0.1457|
| visc | 327325 | 5.4414 | 3.4610 | 233 | 1.57 | 0.1173|
| Intercept | 327933 | -15.7985 | 8.0634 | 233 | -1.96 | 0.0513|
| visc | 327933 | 2.1601 | 3.4703 | 233 | 0.62 | 0.5343|
| Intercept | 331318 | 2.7174 | 8.0876 | 233 | 0.34 | 0.7372|
| visc | 331318 | 1.5695 | 3.4677 | 233 | 0.45 | 0.6513|
| Intercept | 333524 | -19.7928 | 8.0696 | 233 | -2.45 | 0.0149|
| visc | 333524 | -2.8167 | 3.4675 | 233 | -0.81 | 0.4174|
| Intercept | 334672 | -9.3318 | 8.1449 | 233 | -1.15 | 0.2531|
| visc | 334672 | -0.2781 | 3.3323 | 233 | -0.08 | 0.9336|
| Intercept | 336167 | 14.8738 | 7.9113 | 233 | 1.88 | 0.0613|
| visc | 336167 | 1.5025 | 3.6127 | 233 | 0.42 | 0.6779|
| Intercept | 336843 | -5.0848 | 8.0713 | 233 | -0.63 | 0.5293|
| visc | 336843 | 2.1019 | 3.4667 | 233 | 0.61 | 0.5449|
| Intercept | 337315 | 25.8868 | 8.0583 | 233 | 3.21 | 0.0015|
| visc | 337315 | 0.8288 | 3.4775 | 233 | 0.24 | 0.8118|
| Intercept | 342131 | 25.3350 | 8.0740 | 233 | 3.14 | 0.0019|
| visc | 342131 | -3.8521 | 3.4396 | 233 | -1.12 | 0.2639|
| Intercept | 343097 | -31.4949 | 8.0884 | 233 | -3.89 | 0.0001|
| visc | 343097 | -3.3096 | 3.4580 | 233 | -0.96 | 0.3395|
| Intercept | 343233 | 15.6678 | 8.0496 | 233 | 1.95 | 0.0528|
| visc | 343233 | 2.3635 | 3.5038 | 233 | 0.67 | 0.5006|
| Intercept | 354494 | -4.5916 | 8.9587 | 233 | -0.51 | 0.6088|
| visc | 354494 | 0.1748 | 3.4779 | 233 | 0.05 | 0.9600|
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|----|---------|-------|
| Intercept | 358230 | -14.4145 | 8.0950 | 233 | -1.78 | 0.0763 |
| visc | 358230 | -0.03356 | 3.4757 | 233 | -0.01 | 0.9923 |
| Intercept | 359308 | -5.0957 | 8.1997 | 233 | -0.62 | 0.5349 |
| visc | 359308 | -1.6555 | 3.9395 | 233 | -0.42 | 0.6747 |
| Intercept | 364664 | -13.4061 | 8.0684 | 233 | -1.66 | 0.0979 |
| visc | 364664 | -1.6177 | 3.4582 | 233 | -0.47 | 0.6404 |
| Intercept | 367836 | -34.1645 | 8.0160 | 233 | -4.26 | <.0001 |
| visc | 367836 | -2.7668 | 3.4778 | 233 | -0.80 | 0.4271 |
| Intercept | 368973 | -2.2896 | 8.1935 | 233 | 0.28 | 0.7802 |
| visc | 368973 | 1.6484 | 3.9467 | 233 | 0.42 | 0.6766 |
| Intercept | 369941 | 12.6535 | 8.4890 | 233 | 1.49 | 0.1374 |
| visc | 369941 | 1.3538 | 3.5256 | 233 | 0.38 | 0.7013 |
| Intercept | 370942 | 9.8806 | 8.1686 | 233 | 1.21 | 0.2277 |
| visc | 370942 | 2.4606 | 3.9652 | 233 | 0.62 | 0.5355 |
| Intercept | 371021 | 10.8710 | 8.0735 | 233 | 1.35 | 0.1794 |
| visc | 371021 | 0.2867 | 3.4648 | 233 | 0.08 | 0.9341 |
| Intercept | 374068 | 24.1489 | 8.0545 | 233 | 2.47 | 0.0144 |
| visc | 374068 | 0.4478 | 3.4446 | 233 | 0.13 | 0.8967 |
| Intercept | 374687 | 7.3244 | 8.0545 | 233 | 0.91 | 0.3641 |
| visc | 374687 | -1.4046 | 3.4945 | 233 | -0.40 | 0.6881 |
| Intercept | 376004 | -23.1848 | 8.0579 | 233 | -2.88 | 0.0044 |
| visc | 376004 | -1.9599 | 3.4785 | 233 | -0.56 | 0.5737 |
| Intercept | 376252 | -2.1936 | 8.0439 | 233 | -0.27 | 0.7853 |
| visc | 376252 | 2.9699 | 3.5057 | 233 | 0.85 | 0.3978 |
| Intercept | 380166 | 6.6885 | 8.0181 | 233 | 0.83 | 0.4050 |
| visc | 380166 | 2.1226 | 3.4966 | 233 | 0.61 | 0.5444 |
| Intercept | 380998 | -10.1333 | 8.0698 | 233 | -1.26 | 0.2105 |
| visc | 380998 | -4.8899 | 3.4617 | 233 | -1.41 | 0.1591 |
| Intercept | 383193 | -3.1909 | 8.0574 | 233 | -0.40 | 0.6925 |
| visc | 383193 | 0.6861 | 3.4608 | 233 | 0.20 | 0.8430 |
| Intercept | 383744 | -20.0394 | 8.1369 | 233 | -2.46 | 0.0145 |
| visc | 383744 | 1.0100 | 3.4234 | 233 | 0.30 | 0.7682 |
| Intercept | 385151 | 10.4512 | 8.1850 | 233 | 1.28 | 0.2029 |
| visc | 385151 | 2.1018 | 3.9476 | 233 | 0.53 | 0.5949 |
| Intercept | 386040 | -30.5801 | 8.1267 | 233 | -3.76 | 0.0002 |
The Mixed Procedure

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|----|---------|------|-----|
| visc | 386040 | -6.0407 | 3.3891 | 233| -1.78 | 0.0760 |
| Intercept | 386488 | -8.7943 | 8.0799 | 233| -1.09 | 0.2775 |
| visc | 386488 | -3.9075 | 3.4779 | 233| -1.12 | 0.2624 |
| Intercept | 386758 | 9.8192 | 8.1056 | 233| 1.21 | 0.2270 |
| visc | 386758 | -0.7116 | 3.4273 | 233| -0.21 | 0.8357 |
| Intercept | 387658 | -12.2296 | 8.0984 | 233| -1.51 | 0.1324 |
| visc | 387658 | 4.0702 | 3.4421 | 233| 1.18 | 0.2382 |
| Intercept | 392316 | -11.3545 | 8.0796 | 233| -1.41 | 0.1613 |
| visc | 392316 | 1.4799 | 3.4498 | 233| 0.43 | 0.6683 |
| Intercept | 393936 | -18.6853 | 8.0766 | 233| -2.31 | 0.0216 |
| visc | 393936 | 0.3369 | 3.4643 | 233| 0.10 | 0.9226 |
| Intercept | 394588 | -40.3634 | 8.1444 | 233| -4.96 | <.0001 |
| visc | 394588 | -2.1937 | 3.9667 | 233| -0.55 | 0.5808 |
| Intercept | 397661 | -34.9027 | 8.0717 | 233| -4.32 | <.0001 |
| visc | 397661 | -1.2971 | 3.4656 | 233| -0.37 | 0.7085 |
| Intercept | 397931 | -20.4450 | 9.7041 | 233| -2.11 | 0.0362 |
| visc | 397931 | -1.2698 | 3.5407 | 233| -0.36 | 0.7202 |

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>1</td>
<td>127</td>
<td>1.62</td>
<td>0.2061</td>
</tr>
</tbody>
</table>
The MEANS Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>N</th>
<th>Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>Participant/ID Number</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>slope</td>
<td>Std Err Pred</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>S1pSE</td>
<td>PCC/Number</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>pccn</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>dVdate</td>
<td>Visit/Date/#3 (1)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>vis</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>urine24_c</td>
<td>24hr Urine (dL/24hr)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>surice_ca</td>
<td>Serum:Uric Acid (mg/dL) (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>Serum:HDL (mg/dL) (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>albe_ca</td>
<td>Urine:Albumin Excr (mg/24hr) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ecitre_ca</td>
<td>Urine:Citrate Excr (mg/24h) (c)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>esode_cc</td>
<td>Urine:Sodium Excr (mEq/24h) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>xBvdate</td>
<td>Visit/Date</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>cic</td>
<td>Correct Iothalamate Clear # 10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>bsa_c</td>
<td>BSA (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>hdyn</td>
<td>Hypertension yes/no # 12</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>bmi_c</td>
<td>BMI (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>age</td>
<td>Age of participant</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>MDRD GFR</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrskvs</td>
<td>MR K Vol/Sum Ster</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrrcvs</td>
<td>MR C Vol/Sum Reg</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>visc</td>
<td>Relative Visit</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrctps</td>
<td>Percent MR Cyst Vol</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lnrskvs</td>
<td>Log10 MR K Vol/Sum Ster</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lnrrcvs</td>
<td>Log10 MR C Vol/Sum Reg</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>Log10 Urine:Albumin Excr (mg/24hr) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>lecitre_ca</td>
<td>Log10 Urine:Citrate Excr (mg/24h) (c)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>lMDRD_GFR</td>
<td>Log10 MDRD GFR</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lrbf</td>
<td>Log10 Renal Blood Flow Corrected for BSA</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>lrvr</td>
<td>Log10 RVR corrected for BSA</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>lrpf</td>
<td>Log10 Renal Plasma Flow</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>lff</td>
<td>Log10 Filtration Fraction</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>race</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>sex</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>ind1_cic</td>
<td>CIC < or >= 100?</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ind2_cic</td>
<td>CIC < or >= 85?</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>genotype</td>
<td>Gene Type</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>AvgSystol</td>
<td>Average Systolic BP over years</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>AvgDiastol</td>
<td>Average Diastolic BP over years</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
The GLM Procedure

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>2</td>
<td>Female, Male</td>
</tr>
<tr>
<td>hdyn</td>
<td>2</td>
<td>N, Y</td>
</tr>
</tbody>
</table>

Number of observations 131

NOTE: Due to missing values, only 107 observations can be used in this analysis.
The GLM Procedure

Dependent Variable: slope

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12</td>
<td>288.9153862</td>
<td>24.0762822</td>
<td>4.27</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>94</td>
<td>529.9994061</td>
<td>5.6382916</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>106</td>
<td>818.9147923</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coeff Var</th>
<th>Root MSE</th>
<th>slope Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.352803</td>
<td>-2782.174</td>
<td>2.374509</td>
<td>-0.085347</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>4.2043274</td>
<td>4.2043274</td>
<td>0.75</td>
<td>0.3900</td>
</tr>
<tr>
<td>hdyn</td>
<td>1</td>
<td>0.0414483</td>
<td>0.0414483</td>
<td>0.01</td>
<td>0.9319</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>4.8408324</td>
<td>4.8408324</td>
<td>0.86</td>
<td>0.3565</td>
</tr>
<tr>
<td>lrbf</td>
<td>1</td>
<td>19.0043057</td>
<td>19.0043057</td>
<td>3.37</td>
<td>0.0695</td>
</tr>
<tr>
<td>bmi_c</td>
<td>1</td>
<td>0.0377003</td>
<td>0.0377003</td>
<td>0.01</td>
<td>0.9350</td>
</tr>
<tr>
<td>lmrskvs</td>
<td>1</td>
<td>111.5278577</td>
<td>111.5278577</td>
<td>19.78</td>
<td><.0001</td>
</tr>
<tr>
<td>urine24_c</td>
<td>1</td>
<td>0.7922057</td>
<td>0.7922057</td>
<td>0.14</td>
<td>0.7086</td>
</tr>
<tr>
<td>esode_cc</td>
<td>1</td>
<td>2.3178334</td>
<td>2.3178334</td>
<td>0.41</td>
<td>0.5230</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>1</td>
<td>5.8224230</td>
<td>5.8224230</td>
<td>1.03</td>
<td>0.3121</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>1</td>
<td>11.1275032</td>
<td>11.1275032</td>
<td>1.97</td>
<td>0.1634</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>1</td>
<td>1.2950677</td>
<td>1.2950677</td>
<td>0.23</td>
<td>0.6329</td>
</tr>
<tr>
<td>surice_ca</td>
<td>1</td>
<td>0.1416739</td>
<td>0.1416739</td>
<td>0.03</td>
<td>0.8744</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>4.510514965</td>
<td>B 9.77443747</td>
<td>0.46</td>
<td>0.6455</td>
<td></td>
</tr>
<tr>
<td>sex Female</td>
<td>-0.645968580</td>
<td>B 0.74806079</td>
<td>-0.86</td>
<td>0.3900</td>
<td></td>
</tr>
<tr>
<td>sex Male</td>
<td>0.000000000</td>
<td>B . .</td>
<td>. .</td>
<td>. .</td>
<td></td>
</tr>
<tr>
<td>hdyn N</td>
<td>-0.049339819</td>
<td>B 0.57546339</td>
<td>-0.09</td>
<td>0.9319</td>
<td></td>
</tr>
<tr>
<td>hdyn Y</td>
<td>0.000000000</td>
<td>B . .</td>
<td>. .</td>
<td>. .</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>0.031601672</td>
<td>B 0.03410545</td>
<td>0.93</td>
<td>0.3565</td>
<td></td>
</tr>
<tr>
<td>lrbf</td>
<td>4.265692706</td>
<td>B 2.32347138</td>
<td>1.84</td>
<td>0.0695</td>
<td></td>
</tr>
<tr>
<td>bmi_c</td>
<td>0.004580696</td>
<td>B 0.05601864</td>
<td>0.08</td>
<td>0.9350</td>
<td></td>
</tr>
<tr>
<td>lmrskvs</td>
<td>-6.233883444</td>
<td>B 1.40165381</td>
<td>-4.45</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>urine24_c</td>
<td>-0.000096433</td>
<td>0.00025726</td>
<td>-0.37</td>
<td>0.7086</td>
<td></td>
</tr>
<tr>
<td>esode_cc</td>
<td>0.002460019</td>
<td>B 0.00383682</td>
<td>0.64</td>
<td>0.5230</td>
<td></td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>0.681668183</td>
<td>B 0.67080287</td>
<td>1.02</td>
<td>0.3121</td>
<td></td>
</tr>
</tbody>
</table>
Dependent Variable: slope

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|------------|------------|----------------|---------|------|---|
| lpldle_ca | -0.010424805 | 0.00742067 | -1.40 | 0.1634 |
| lphdle_ca | 0.012251428 | 0.02556314 | 0.48 | 0.6329 |
| surice_ca | 0.049592054 | 0.31285341 | 0.16 | 0.8744 |

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.71196294</td>
<td>1.11824011</td>
<td>6.59372283</td>
</tr>
<tr>
<td>2</td>
<td>-3.74816630</td>
<td>-3.03528654</td>
<td>-0.71287976</td>
</tr>
<tr>
<td>3</td>
<td>-2.38209517</td>
<td>0.71398931</td>
<td>-3.09608448</td>
</tr>
<tr>
<td>4</td>
<td>-0.70665248</td>
<td>-1.61817653</td>
<td>0.91152405</td>
</tr>
<tr>
<td>5</td>
<td>0.18191143</td>
<td>-1.09080384</td>
<td>1.27271527</td>
</tr>
<tr>
<td>6</td>
<td>0.41679433</td>
<td>-0.64228373</td>
<td>1.05907806</td>
</tr>
<tr>
<td>7</td>
<td>1.55329636</td>
<td>0.59975683</td>
<td>0.95353953</td>
</tr>
<tr>
<td>8</td>
<td>2.64771317</td>
<td>1.69448693</td>
<td>0.95322624</td>
</tr>
<tr>
<td>9</td>
<td>8.00636753</td>
<td>0.71760057</td>
<td>7.28876696</td>
</tr>
<tr>
<td>10</td>
<td>0.16298043</td>
<td>0.69043956</td>
<td>-0.52745914</td>
</tr>
<tr>
<td>11</td>
<td>2.11657444</td>
<td>1.27164856</td>
<td>0.84491888</td>
</tr>
<tr>
<td>12</td>
<td>-1.87055213</td>
<td>0.88353853</td>
<td>-2.75409067</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>14</td>
<td>-4.88052287</td>
<td>-3.41724689</td>
<td>-1.46327598</td>
</tr>
<tr>
<td>15</td>
<td>-4.18054555</td>
<td>-2.49908335</td>
<td>-1.68074220</td>
</tr>
<tr>
<td>16</td>
<td>-3.66708516</td>
<td>-0.06222710</td>
<td>-3.60485806</td>
</tr>
<tr>
<td>17</td>
<td>-2.57118721</td>
<td>-1.05022478</td>
<td>-1.52096243</td>
</tr>
<tr>
<td>18</td>
<td>1.73651350</td>
<td>1.65110134</td>
<td>0.08541216</td>
</tr>
<tr>
<td>19</td>
<td>3.1200385</td>
<td>0.67953761</td>
<td>2.44046624</td>
</tr>
<tr>
<td>20</td>
<td>0.14311399</td>
<td>0.00285665</td>
<td>0.14025733</td>
</tr>
<tr>
<td>21</td>
<td>-3.96335457</td>
<td>-0.41150903</td>
<td>-3.55184553</td>
</tr>
<tr>
<td>22</td>
<td>-1.58246263</td>
<td>-0.41803033</td>
<td>-1.16443230</td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>24</td>
<td>-1.49988656</td>
<td>-0.45902074</td>
<td>-1.04086583</td>
</tr>
<tr>
<td>25</td>
<td>0.18036035</td>
<td>-0.97230369</td>
<td>1.15266404</td>
</tr>
<tr>
<td>26</td>
<td>2.30563127</td>
<td>2.42560547</td>
<td>-0.11997420</td>
</tr>
<tr>
<td>27</td>
<td>0.54753796</td>
<td>0.31503021</td>
<td>0.23250775</td>
</tr>
<tr>
<td>28</td>
<td>-2.07726250</td>
<td>-1.62702977</td>
<td>-0.45023273</td>
</tr>
<tr>
<td>29</td>
<td>1.28501930</td>
<td>-0.92753003</td>
<td>2.21254932</td>
</tr>
<tr>
<td>30</td>
<td>-1.66875065</td>
<td>-0.64056444</td>
<td>-1.02818621</td>
</tr>
<tr>
<td>31</td>
<td>0.59141085</td>
<td>1.06587114</td>
<td>-0.47446029</td>
</tr>
<tr>
<td>32</td>
<td>0.80463450</td>
<td>1.40478771</td>
<td>-0.60015321</td>
</tr>
<tr>
<td>33</td>
<td>2.13782613</td>
<td>2.98734676</td>
<td>-0.84952063</td>
</tr>
<tr>
<td>34</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>35</td>
<td>-0.64650326</td>
<td>0.57134106</td>
<td>-1.21694432</td>
</tr>
<tr>
<td>36</td>
<td>2.49640474</td>
<td>2.37173492</td>
<td>0.1246981</td>
</tr>
<tr>
<td>37</td>
<td>9.05872977</td>
<td>2.62921912</td>
<td>6.42951065</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>1.26367461</td>
<td>2.31220432</td>
<td>-1.04852971</td>
</tr>
<tr>
<td>39</td>
<td>-1.09850190</td>
<td>2.95546629</td>
<td>-4.05396818</td>
</tr>
<tr>
<td>40</td>
<td>0.69436877</td>
<td>0.45802398</td>
<td>0.23634479</td>
</tr>
<tr>
<td>41</td>
<td>-1.03447763</td>
<td>-0.16809944</td>
<td>-0.86637820</td>
</tr>
<tr>
<td>42</td>
<td>2.19233910</td>
<td>0.37268086</td>
<td>1.81965824</td>
</tr>
<tr>
<td>43</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.00000000</td>
<td>-0.85061510</td>
<td>0.85061510</td>
</tr>
<tr>
<td>45</td>
<td>0.00000000</td>
<td>0.87230210</td>
<td>-0.87230210</td>
</tr>
<tr>
<td>46</td>
<td>1.37689947</td>
<td>2.08260316</td>
<td>-0.70570369</td>
</tr>
<tr>
<td>47</td>
<td>-0.09530910</td>
<td>0.93671052</td>
<td>-1.03201962</td>
</tr>
<tr>
<td>48</td>
<td>0.67942915</td>
<td>-0.07866717</td>
<td>0.75809631</td>
</tr>
<tr>
<td>49</td>
<td>2.67731929</td>
<td>3.26780062</td>
<td>-0.59048132</td>
</tr>
<tr>
<td>50</td>
<td>-4.02856756</td>
<td>-2.87065392</td>
<td>-1.15791364</td>
</tr>
<tr>
<td>51</td>
<td>-0.76830456</td>
<td>1.53261645</td>
<td>-2.30092101</td>
</tr>
<tr>
<td>52</td>
<td>-2.41112864</td>
<td>2.00688183</td>
<td>-4.41801047</td>
</tr>
<tr>
<td>53</td>
<td>-0.47961709</td>
<td>-1.70917690</td>
<td>1.22955982</td>
</tr>
<tr>
<td>54</td>
<td>0.14008145</td>
<td>0.49752599</td>
<td>-0.35744454</td>
</tr>
<tr>
<td>55</td>
<td>0.00039054</td>
<td>0.35599927</td>
<td>-0.35560873</td>
</tr>
<tr>
<td>56</td>
<td>-2.59288970</td>
<td>-1.97546316</td>
<td>-0.61742654</td>
</tr>
<tr>
<td>57</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>-0.62082193</td>
<td>0.27054383</td>
<td>-0.89136576</td>
</tr>
<tr>
<td>59</td>
<td>-1.03600217</td>
<td>-0.37698631</td>
<td>-0.65901587</td>
</tr>
<tr>
<td>60</td>
<td>-0.29243448</td>
<td>-0.08017464</td>
<td>-0.21225985</td>
</tr>
<tr>
<td>61</td>
<td>-1.66589882</td>
<td>-0.12771060</td>
<td>-1.53818822</td>
</tr>
<tr>
<td>62</td>
<td>-2.10848305</td>
<td>-2.93234813</td>
<td>0.82386508</td>
</tr>
<tr>
<td>63</td>
<td>1.34855322</td>
<td>-0.03541435</td>
<td>1.38396758</td>
</tr>
<tr>
<td>64</td>
<td>2.41727841</td>
<td>1.10780612</td>
<td>1.30947229</td>
</tr>
<tr>
<td>65</td>
<td>-1.88842724</td>
<td>-1.10345805</td>
<td>-0.78496919</td>
</tr>
<tr>
<td>66</td>
<td>-3.73925416</td>
<td>-3.08251015</td>
<td>-0.65674401</td>
</tr>
<tr>
<td>67</td>
<td>-6.84313800</td>
<td>-4.93694168</td>
<td>-1.90619633</td>
</tr>
<tr>
<td>68</td>
<td>0.42490097</td>
<td>-1.33141823</td>
<td>1.75631921</td>
</tr>
<tr>
<td>69</td>
<td>-2.23433485</td>
<td>0.47067995</td>
<td>-2.70501480</td>
</tr>
<tr>
<td>70</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>-1.24934158</td>
<td>-0.80970979</td>
<td>-0.43963179</td>
</tr>
<tr>
<td>72</td>
<td>-6.07681033</td>
<td>-1.57111165</td>
<td>-4.50569868</td>
</tr>
<tr>
<td>73</td>
<td>-3.82037618</td>
<td>1.36435427</td>
<td>-5.18473045</td>
</tr>
<tr>
<td>74</td>
<td>1.54451986</td>
<td>1.07342293</td>
<td>0.47109692</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.22051009</td>
<td>-0.71905651</td>
<td>0.93956660</td>
</tr>
<tr>
<td>76 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>0.62958507</td>
<td>-2.62320273</td>
<td>3.25278779</td>
</tr>
<tr>
<td>78</td>
<td>-2.91403302</td>
<td>0.00448892</td>
<td>-2.91852194</td>
</tr>
<tr>
<td>79</td>
<td>2.86878824</td>
<td>2.27986863</td>
<td>0.58890186</td>
</tr>
<tr>
<td>80</td>
<td>-2.87957220</td>
<td>-2.10645486</td>
<td>-0.77311734</td>
</tr>
<tr>
<td>81 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>-1.19752906</td>
<td>-1.43891588</td>
<td>0.24138681</td>
</tr>
<tr>
<td>84</td>
<td>0.19281413</td>
<td>0.60634732</td>
<td>-0.41353318</td>
</tr>
<tr>
<td>85</td>
<td>3.76480771</td>
<td>1.37836492</td>
<td>2.38644279</td>
</tr>
<tr>
<td>86</td>
<td>4.14898819</td>
<td>-0.25203901</td>
<td>4.40102720</td>
</tr>
<tr>
<td>87 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>-2.86538177</td>
<td>-0.34621292</td>
<td>-2.51916885</td>
</tr>
<tr>
<td>89</td>
<td>3.32643573</td>
<td>1.31413330</td>
<td>2.01230243</td>
</tr>
<tr>
<td>90</td>
<td>0.00000000</td>
<td>-2.07469884</td>
<td>2.07469884</td>
</tr>
<tr>
<td>91 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>1.32477775</td>
<td>-1.46594011</td>
<td>2.79071786</td>
</tr>
<tr>
<td>93</td>
<td>4.93701391</td>
<td>0.73142251</td>
<td>4.20559140</td>
</tr>
<tr>
<td>94 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>2.16007024</td>
<td>1.52227464</td>
<td>0.63779560</td>
</tr>
<tr>
<td>96</td>
<td>1.56948218</td>
<td>2.29877538</td>
<td>-0.72929320</td>
</tr>
<tr>
<td>97</td>
<td>-2.81671718</td>
<td>-3.87820035</td>
<td>1.06148317</td>
</tr>
<tr>
<td>98</td>
<td>-0.27812012</td>
<td>-1.59336285</td>
<td>1.31524273</td>
</tr>
<tr>
<td>99</td>
<td>1.50245616</td>
<td>0.67410662</td>
<td>0.82834954</td>
</tr>
<tr>
<td>100</td>
<td>2.10190188</td>
<td>2.12767670</td>
<td>-0.02577482</td>
</tr>
<tr>
<td>101</td>
<td>0.82881714</td>
<td>1.37832909</td>
<td>-0.54951195</td>
</tr>
<tr>
<td>102</td>
<td>-3.85208039</td>
<td>-0.22368885</td>
<td>-3.62839154</td>
</tr>
<tr>
<td>103 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>2.36353796</td>
<td>0.27431280</td>
<td>2.08922516</td>
</tr>
<tr>
<td>105</td>
<td>0.17476666</td>
<td>0.12804388</td>
<td>0.04672278</td>
</tr>
<tr>
<td>106</td>
<td>-0.03355874</td>
<td>-0.26098834</td>
<td>0.22742959</td>
</tr>
<tr>
<td>107 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>-1.61773122</td>
<td>1.25026343</td>
<td>-2.86799465</td>
</tr>
<tr>
<td>109 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 *</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>112 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.28665804</td>
<td>0.66097668</td>
<td>-0.37431864</td>
</tr>
<tr>
<td>114</td>
<td>0.44781852</td>
<td>1.27375616</td>
<td>-0.82593764</td>
</tr>
<tr>
<td>115 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>2.96987986</td>
<td>0.89204045</td>
<td>2.07783941</td>
</tr>
<tr>
<td>118</td>
<td>2.12255584</td>
<td>0.73630204</td>
<td>1.38625380</td>
</tr>
<tr>
<td>119</td>
<td>-4.88986382</td>
<td>-0.93484989</td>
<td>-3.95501392</td>
</tr>
<tr>
<td>120</td>
<td>0.68610241</td>
<td>0.20193665</td>
<td>0.48416577</td>
</tr>
<tr>
<td>121</td>
<td>1.01003721</td>
<td>-1.71483995</td>
<td>2.72487716</td>
</tr>
<tr>
<td>122 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>-6.04069374</td>
<td>-3.47673397</td>
<td>-2.56395976</td>
</tr>
<tr>
<td>124</td>
<td>-3.90746752</td>
<td>-1.80025044</td>
<td>-2.10721708</td>
</tr>
<tr>
<td>125 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>4.07017840</td>
<td>-0.94545549</td>
<td>5.01563389</td>
</tr>
<tr>
<td>127</td>
<td>1.47987122</td>
<td>-1.09480182</td>
<td>2.57467305</td>
</tr>
<tr>
<td>128 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>-2.19371375</td>
<td>-3.46835614</td>
<td>1.27464239</td>
</tr>
<tr>
<td>130 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>-1.26983553</td>
<td>-1.26679863</td>
<td>-0.00303690</td>
</tr>
</tbody>
</table>

* Observation was not used in this analysis

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Residuals</td>
<td>-0.0000000</td>
</tr>
<tr>
<td>Sum of Squared Residuals</td>
<td>529.9994061</td>
</tr>
<tr>
<td>Sum of Squared Residuals - Error SS</td>
<td>-0.0000000</td>
</tr>
<tr>
<td>First Order Autocorrelation</td>
<td>0.0935262</td>
</tr>
<tr>
<td>Durbin-Watson D</td>
<td>1.7309151</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>cic</td>
</tr>
<tr>
<td>Covariance Structure</td>
<td>Variance Components</td>
</tr>
<tr>
<td>Subject Effect</td>
<td>pkdid</td>
</tr>
<tr>
<td>Estimation Method</td>
<td>ML</td>
</tr>
<tr>
<td>Residual Variance Method</td>
<td>Profile</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
<td>Model-Based</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
<td>Containment</td>
</tr>
</tbody>
</table>

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>131</td>
<td>200922 201800 201877 203328 204555 205758 206816 208280 208324 209281 213454 214376 215052 216086 220068 223343 223534 223635 224502 226640 229428 229733 232174 234053 234650 234795 235752 236202 237192 239960 241501 242715 243560 243738 244111 244831 245990 246620 247880 248712 252086 255765 256171 259940 263617 264225 264348 265171 268455 271043 271460 271662 271684 273214 273225 277490 281000 281977 283722 283935 285601 286095 290336 292362 293317 293598 294105 294511 295106 295940 298515 299663 300641 300696 300911 301157 301372 303868 304860 306546 312317 313195 313307 313893 316110 318562 320182 320957 321611 323837 325290 327325 327933 331318 333524 334672 336167 336843 337315 342131 343097 343233 354494 358230 359308 364664 367836 368973 369941 370942 371021 374068 374687 376004 376252 380166 380998 383193 383744 385151 386040 386488 386758 387658 392316 393936 394588 397661 397931</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance Parameters</td>
<td>3</td>
</tr>
<tr>
<td>Columns in X</td>
<td>2</td>
</tr>
<tr>
<td>Columns in Z Per Subject</td>
<td>2</td>
</tr>
<tr>
<td>Subjects</td>
<td>131</td>
</tr>
<tr>
<td>Max Obs Per Subject</td>
<td>4</td>
</tr>
<tr>
<td>Observations Used</td>
<td>491</td>
</tr>
<tr>
<td>Observations Not Used</td>
<td>33</td>
</tr>
<tr>
<td>Total Observations</td>
<td>524</td>
</tr>
</tbody>
</table>

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>4562.47580832</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4297.82120188</td>
<td>0.00009847</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4297.64334257</td>
<td>0.00000107</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4297.64150940</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Convergence criteria met.

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>pkdid</td>
<td>365.92</td>
</tr>
<tr>
<td>visc</td>
<td>pkdid</td>
<td>19.6124</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>186.63</td>
</tr>
</tbody>
</table>

Fit Statistics

-2 Log Likelihood 4297.6
AIC (smaller is better) 4307.6
AICC (smaller is better) 4307.8
BIC (smaller is better) 4322.0

Solution for Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>99.8518</td>
<td>1.9610</td>
<td>129</td>
<td>50.92</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>-0.8551</td>
<td>0.6727</td>
<td>127</td>
<td>-1.27</td>
<td>0.2061</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table: Solution for Random Procedure

| Effect | Participant/ID Number | Estimate | Std Pred | DF | t Value | Pr > |t| |
|----------|-----------------------|----------|----------|----|---------|------|---|
| Intercept| 200922 | 9.8709 | 7.9538 | 233| 1.24 | 0.2158|
| visc | 200922 | 7.7120 | 3.5031 | 233| 2.20 | 0.0287|
| Intercept| 201800 | -21.5006 | 8.1266 | 233| -2.65 | 0.0087|
| visc | 201800 | -3.7482 | 3.4580 | 233| -1.08 | 0.2795|
| Intercept| 201877 | -18.8041 | 8.0775 | 233| -3.33 | 0.0208|
| visc | 201877 | -2.3821 | 3.4639 | 233| -0.69 | 0.4923|
| Intercept| 203328 | -1.8301 | 8.2349 | 233| -0.22 | 0.8243|
| visc | 203328 | -0.7067 | 3.4168 | 233| -0.21 | 0.8363|
| Intercept| 204555 | -9.6016 | 8.0821 | 233| -1.19 | 0.2360|
| visc | 204555 | 0.1819 | 3.4470 | 233| 0.05 | 0.9580|
| Intercept| 205758 | -11.9125 | 8.0769 | 233| -1.47 | 0.1416|
| visc | 205758 | 0.4168 | 3.4282 | 233| 0.12 | 0.9033|
| Intercept| 206816 | 10.9525 | 8.0726 | 233| 1.36 | 0.1762|
| visc | 206816 | 1.5533 | 3.4822 | 233| 0.45 | 0.6560|
| Intercept| 208280 | -2.2785 | 8.0860 | 233| -0.28 | 0.7784|
| visc | 208280 | 2.6477 | 3.4703 | 233| 0.76 | 0.4463|
| Intercept| 208324 | 8.0864 | 8.0723 | 233| 1.00 | 0.3175|
| visc | 208324 | 8.0064 | 3.4710 | 233| 2.31 | 0.0220|
| Intercept| 209281 | 21.0191 | 8.1145 | 233| 2.59 | 0.0102|
| visc | 209281 | 0.1630 | 3.5007 | 233| 0.05 | 0.9629|
| Intercept| 213454 | 11.2299 | 8.1381 | 233| 1.38 | 0.1689|
| visc | 213454 | 2.1166 | 3.4074 | 233| 0.62 | 0.5351|
| Intercept| 214376 | 11.7746 | 8.0938 | 233| 1.45 | 0.1471|
| visc | 214376 | -1.8706 | 3.4834 | 233| -0.54 | 0.5918|
| Intercept| 215052 | 25.8528 | 8.5918 | 233| 3.01 | 0.0029|
| visc | 215052 | 1.4588 | 3.3789 | 233| 0.43 | 0.6663|
| Intercept| 216086 | -22.0739 | 8.0995 | 233| -2.73 | 0.0069|
| visc | 216086 | -4.8805 | 3.4800 | 233| -1.40 | 0.1621|
| Intercept| 220068 | -26.8827 | 8.1142 | 233| -3.31 | 0.0011|
| visc | 220068 | -4.1805 | 3.4366 | 233| -1.22 | 0.2250|
| Intercept| 223343 | 11.8419 | 8.0914 | 233| 1.46 | 0.1447|
| visc | 223343 | -3.6671 | 3.4287 | 233| -1.07 | 0.2859|
| Intercept| 223534 | 2.5869 | 8.2222 | 233| 0.31 | 0.7533|
| visc | 223534 | -2.5712 | 3.9385 | 233| -0.65 | 0.5145|
| Intercept| 223635 | 29.4010 | 8.2412 | 233| 3.57 | 0.0004|
Solution for Random Procedure Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t|
|--------|-----------------------|----------|--------------|-----|---------|------|
| visc | 223635 | 1.7365 | 3.2774 | 233 | 0.53 | 0.5967 |
| Intercept | 224502 | -10.5019 | 7.9425 | 233 | -1.32 | 0.1874 |
| visc | 224502 | 3.1200 | 3.4739 | 233 | 0.90 | 0.3700 |
| Intercept | 226640 | -4.2333 | 8.0815 | 233 | -0.52 | 0.6009 |
| visc | 226640 | 0.1431 | 3.4661 | 233 | 0.04 | 0.9671 |
| Intercept | 229428 | 2.5477 | 8.0695 | 233 | 0.32 | 0.7525 |
| visc | 229428 | -3.9634 | 3.4860 | 233 | -1.14 | 0.2567 |
| Intercept | 229733 | -23.1236 | 8.0754 | 233 | -2.86 | 0.0046 |
| visc | 229733 | -1.5825 | 3.3804 | 233 | -0.47 | 0.6401 |
| Intercept | 232174 | 18.2360 | 8.3386 | 233 | 2.19 | 0.0297 |
| visc | 232174 | 2.1556 | 3.8642 | 233 | 0.56 | 0.5775 |
| Intercept | 234053 | 24.3129 | 8.0558 | 233 | 3.02 | 0.0028 |
| visc | 234053 | -1.4999 | 3.4836 | 233 | -0.43 | 0.6672 |
| Intercept | 234650 | 12.3188 | 8.0143 | 233 | 1.54 | 0.1256 |
| visc | 234650 | 0.1804 | 3.4818 | 233 | 0.05 | 0.9587 |
| Intercept | 234795 | 21.4886 | 9.7041 | 233 | 2.21 | 0.0278 |
| visc | 234795 | 2.3056 | 3.5407 | 233 | 0.65 | 0.5156 |
| Intercept | 235752 | 1.4559 | 8.2721 | 233 | 0.18 | 0.8604 |
| visc | 235752 | 0.5475 | 3.5044 | 233 | 0.16 | 0.8760 |
| Intercept | 236202 | -6.5499 | 8.0695 | 233 | -0.81 | 0.4178 |
| visc | 236202 | -2.0773 | 3.4323 | 233 | -0.61 | 0.5456 |
| Intercept | 237192 | -3.7821 | 8.1000 | 233 | -0.47 | 0.6410 |
| visc | 237192 | 1.2850 | 3.4322 | 233 | 0.37 | 0.7084 |
| Intercept | 239960 | -20.6987 | 8.1370 | 233 | -2.54 | 0.0116 |
| visc | 239960 | -1.6688 | 3.3732 | 233 | -0.49 | 0.6213 |
| Intercept | 241501 | 16.5069 | 8.2124 | 233 | 2.01 | 0.0456 |
| visc | 241501 | 0.5914 | 3.1425 | 233 | 0.19 | 0.8509 |
| Intercept | 242715 | 3.5277 | 8.1482 | 233 | 0.43 | 0.6655 |
| visc | 242715 | 0.8046 | 3.4256 | 233 | 0.23 | 0.8145 |
| Intercept | 243560 | -1.6101 | 8.1012 | 233 | -0.20 | 0.8426 |
| visc | 243560 | 2.1378 | 3.4562 | 233 | 0.62 | 0.5368 |
| Intercept | 243738 | -14.7003 | 8.0592 | 233 | -1.82 | 0.0694 |
| visc | 243738 | -1.1704 | 3.4833 | 233 | -0.34 | 0.7372 |
| Intercept | 244111 | 18.4773 | 8.1593 | 233 | 2.26 | 0.0245 |
| visc | 244111 | -0.6456 | 3.3343 | 233 | -0.19 | 0.8466 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|----------|-----------------------|----------|--------------|-----|---------|------|---|
| Intercept| 244831 | 12.0548 | 8.1678 | 233 | 1.48 | 0.1413 |
| visc | 244831 | 2.4964 | 3.4806 | 233 | 0.72 | 0.4740 |
| Intercept| 245990 | 22.9750 | 8.1117 | 233 | 2.83 | 0.0050 |
| visc | 245990 | 9.0587 | 3.2941 | 233 | 2.75 | 0.0064 |
| Intercept| 246620 | 7.3146 | 8.1832 | 233 | 0.89 | 0.3723 |
| visc | 246620 | 1.2637 | 3.4229 | 233 | 0.37 | 0.7123 |
| Intercept| 247880 | 20.9017 | 8.1612 | 233 | 2.56 | 0.0111 |
| visc | 247880 | -1.0985 | 3.3378 | 233 | -0.33 | 0.7424 |
| Intercept| 248712 | 13.8855 | 8.2001 | 233 | 1.69 | 0.0917 |
| visc | 248712 | -0.6944 | 3.4201 | 233 | -0.20 | 0.8393 |
| Intercept| 250286 | -20.9511 | 8.1647 | 233 | -2.57 | 0.0109 |
| visc | 250286 | -1.0345 | 3.4354 | 233 | -0.30 | 0.7636 |
| Intercept| 255765 | 12.5276 | 8.0826 | 233 | 1.55 | 0.1225 |
| visc | 255765 | 2.1923 | 3.4720 | 233 | 0.63 | 0.5284 |
| Intercept| 256171 | 21.5266 | 7.9345 | 233 | 2.71 | 0.0072 |
| visc | 256171 | -0.1267 | 3.5389 | 233 | -0.04 | 0.9715 |
| Intercept| 258950 | -9.8355 | 11.1928 | 233 | -0.88 | 0.3805 |
| visc | 258950 | 0 | 4.4286 | 233 | 0.00 | 1.0000 |
| Intercept| 259940 | 17.3165 | 11.1928 | 233 | 1.55 | 0.1232 |
| visc | 259940 | 0 | 4.4286 | 233 | 0.00 | 1.0000 |
| Intercept| 263617 | 0.3051 | 8.1201 | 233 | 0.04 | 0.9701 |
| visc | 263617 | 1.3769 | 3.4574 | 233 | 0.40 | 0.6908 |
| Intercept| 264225 | 36.2499 | 8.1059 | 233 | 4.47 | <.0001 |
| visc | 264225 | -0.09531 | 3.4187 | 233 | -0.03 | 0.9778 |
| Intercept| 264348 | 19.8760 | 8.0494 | 233 | 2.47 | 0.0143 |
| visc | 264348 | 0.6794 | 3.4767 | 233 | 0.20 | 0.8452 |
| Intercept| 265171 | 18.4988 | 8.1021 | 233 | 2.28 | 0.0233 |
| visc | 265171 | 2.6773 | 3.4558 | 233 | 0.77 | 0.4393 |
| Intercept| 268455 | -32.8406 | 8.2004 | 233 | -4.00 | <.0001 |
| visc | 268455 | -4.0286 | 3.4247 | 233 | -1.18 | 0.2407 |
| Intercept| 271043 | 7.0382 | 8.0479 | 233 | 0.87 | 0.3827 |
| visc | 271043 | -0.7683 | 3.3200 | 233 | -0.23 | 0.8172 |
| Intercept| 271460 | -5.9326 | 8.0629 | 233 | -0.74 | 0.4626 |
| visc | 271460 | -2.4111 | 3.4664 | 233 | -0.70 | 0.4874 |
| Intercept| 271662 | -3.7617 | 8.8992 | 233 | -0.42 | 0.6729 |
The Mixed Procedure

Solution for Random Procedure Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|---------|------|---|
| visc | 271662 | -0.4796 | 4.3088 | 233| -0.11 | 0.9115|
| Intercept| 271684 | 15.3280 | 8.1629 | 233| 1.88 | 0.0617|
| visc | 271684 | 0.1401 | 3.4130 | 233| 0.04 | 0.9673|
| Intercept| 273214 | 18.9258 | 7.9278 | 233| 2.39 | 0.0178|
| visc | 273214 | 0.000391 | 3.5427 | 233| 0.00 | 0.9999|
| Intercept| 273225 | -25.8435 | 9.0021 | 233| -2.87 | 0.0045|
| visc | 273225 | -2.5929 | 3.4509 | 233| -0.75 | 0.4532|
| Intercept| 277490 | -15.9012 | 8.1186 | 233| -1.96 | 0.0514|
| visc | 277490 | -0.3818 | 3.4258 | 233| -0.11 | 0.9114|
| Intercept| 281000 | 6.9506 | 8.0366 | 233| 0.86 | 0.3880|
| visc | 281000 | -0.6208 | 3.4801 | 233| -0.18 | 0.8586|
| Intercept| 281977 | 14.4575 | 8.1048 | 233| 1.78 | 0.0758|
| visc | 281977 | -1.0360 | 3.4517 | 233| -0.30 | 0.7643|
| Intercept| 283722 | 47.9924 | 8.0319 | 233| 5.98 | <.0001|
| visc | 283722 | -0.2924 | 3.4505 | 233| -0.08 | 0.9325|
| Intercept| 283935 | -29.6781 | 8.3021 | 233| -3.57 | 0.0004|
| visc | 283935 | -1.6659 | 3.8749 | 233| -0.43 | 0.6676|
| Intercept| 285601 | 30.3623 | 8.1266 | 233| 3.74 | 0.0002|
| visc | 285601 | -2.1085 | 3.4521 | 233| -0.61 | 0.5419|
| Intercept| 286095 | 19.1998 | 8.0833 | 233| 2.38 | 0.0183|
| visc | 286095 | 1.3486 | 3.4561 | 233| 0.39 | 0.6967|
| Intercept| 290336 | 18.7523 | 8.1987 | 233| 2.29 | 0.0231|
| visc | 290336 | 2.4173 | 3.4199 | 233| 0.71 | 0.4804|
| Intercept| 292362 | -9.1241 | 8.2722 | 233| -1.10 | 0.2712|
| visc | 292362 | -1.8884 | 3.3819 | 233| -0.56 | 0.5771|
| Intercept| 293317 | -27.0966 | 7.9906 | 233| -3.39 | 0.0008|
| visc | 293317 | -3.7393 | 3.4246 | 233| -1.09 | 0.2760|
| Intercept| 293598 | -31.9300 | 8.2472 | 233| -3.87 | 0.0001|
| visc | 293598 | -6.8431 | 3.2210 | 233| -2.12 | 0.0347|
| Intercept| 294105 | -13.3069 | 8.5759 | 233| -1.55 | 0.1221|
| visc | 294105 | 0.4249 | 3.4898 | 233| 0.12 | 0.9032|
| Intercept| 294511 | 5.5247 | 8.1421 | 233| 0.68 | 0.4981|
| visc | 294511 | -2.2343 | 3.4356 | 233| -0.65 | 0.5161|
| Intercept| 295106 | 2.3658 | 8.1079 | 233| 0.29 | 0.7707|
| visc | 295106 | 1.6415 | 3.3905 | 233| 0.48 | 0.6287|
The Mixed Procedure

Solution for Random Procedure Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|----------------|---------|
| Intercept | 295940 | -11.0429 | 8.0303 | 233 | -1.38 | 0.1704 |
| Intercept | 295940 | -1.2493 | 3.4390 | 233 | -0.36 | 0.7167 |
| Intercept | 298515 | -16.6225 | 8.0492 | 233 | -2.07 | 0.0400 |
| Intercept | 298515 | -6.0768 | 3.4702 | 233 | -1.75 | 0.0812 |
| Intercept | 299663 | -17.6211 | 8.1477 | 233 | -2.16 | 0.0316 |
| Intercept | 299663 | -3.8204 | 3.3649 | 233 | -1.14 | 0.2574 |
| Intercept | 300641 | 6.7530 | 8.0520 | 233 | 0.84 | 0.4025 |
| Intercept | 300641 | 1.5445 | 3.4615 | 233 | 0.45 | 0.6559 |
| Intercept | 300696 | -3.2218 | 8.0883 | 233 | -0.40 | 0.6908 |
| Intercept | 300696 | 0.2205 | 3.4473 | 233 | 0.06 | 0.9491 |
| Intercept | 300911 | -8.5433 | 8.1830 | 233 | -1.04 | 0.2976 |
| Intercept | 300911 | -0.9976 | 3.9562 | 233 | -0.25 | 0.8011 |
| Intercept | 301157 | -15.3103 | 8.0656 | 233 | -1.90 | 0.0589 |
| Intercept | 301157 | 0.6296 | 3.4685 | 233 | 0.18 | 0.8561 |
| Intercept | 301372 | -1.1176 | 8.0461 | 233 | -0.14 | 0.8897 |
| Intercept | 301372 | -2.9140 | 3.4912 | 233 | -0.83 | 0.4047 |
| Intercept | 303868 | 8.2291 | 8.1087 | 233 | 1.01 | 0.3112 |
| Intercept | 303868 | 2.8688 | 3.4253 | 233 | 0.84 | 0.4031 |
| Intercept | 304860 | -10.4506 | 8.0485 | 233 | -1.30 | 0.1954 |
| Intercept | 304860 | -2.8796 | 3.4771 | 233 | -0.83 | 0.4084 |
| Intercept | 306546 | -12.7140 | 8.1159 | 233 | -1.57 | 0.1186 |
| Intercept | 306546 | 4.8926 | 3.4462 | 233 | 1.42 | 0.1570 |
| Intercept | 312317 | -3.3277 | 8.0421 | 233 | -0.41 | 0.6794 |
| Intercept | 312317 | -0.0577 | 3.4970 | 233 | -0.02 | 0.9868 |
| Intercept | 313195 | 1.8383 | 8.1056 | 233 | 0.23 | 0.8208 |
| Intercept | 313195 | -1.1975 | 3.4273 | 233 | -0.35 | 0.7271 |
| Intercept | 313307 | -16.9423 | 8.0713 | 233 | -2.10 | 0.0369 |
| Intercept | 313307 | 0.1928 | 3.4667 | 233 | 0.06 | 0.9557 |
| Intercept | 313893 | 8.2232 | 8.0725 | 233 | 1.02 | 0.3094 |
| Intercept | 313893 | 3.7648 | 3.4790 | 233 | 1.08 | 0.2803 |
| Intercept | 316110 | 7.2520 | 8.1923 | 233 | 0.89 | 0.3769 |
| Intercept | 316110 | 4.1490 | 3.9468 | 233 | 1.05 | 0.2942 |
| Intercept | 318562 | 16.0459 | 8.0678 | 233 | 1.99 | 0.0479 |
| Intercept | 318562 | -2.6328 | 3.5073 | 233 | -0.75 | 0.4536 |
| Intercept | 320182 | 4.3478 | 8.1155 | 233 | 0.54 | 0.5926 |
Solution for Random Procedure Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Participant/ID Number</th>
<th>Estimate</th>
<th>Std Pred</th>
<th>Std Err</th>
<th>Pred</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>320182</td>
<td>-2.8654</td>
<td>3.4397</td>
<td></td>
<td></td>
<td>233</td>
<td>-0.83</td>
<td>0.4057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>320957</td>
<td>18.5730</td>
<td>8.0585</td>
<td></td>
<td></td>
<td>233</td>
<td>2.30</td>
<td>0.0221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>320957</td>
<td>3.3264</td>
<td>3.4700</td>
<td></td>
<td></td>
<td>233</td>
<td>0.96</td>
<td>0.3387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>321611</td>
<td>0</td>
<td>19.1291</td>
<td></td>
<td></td>
<td>233</td>
<td>0.00</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>323837</td>
<td>28.4015</td>
<td>8.1533</td>
<td></td>
<td></td>
<td>233</td>
<td>3.48</td>
<td>0.0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>323837</td>
<td>4.1128</td>
<td>3.4288</td>
<td></td>
<td></td>
<td>233</td>
<td>1.20</td>
<td>0.2316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>325290</td>
<td>-11.3558</td>
<td>8.0497</td>
<td></td>
<td></td>
<td>233</td>
<td>-1.41</td>
<td>0.1597</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>325290</td>
<td>1.3248</td>
<td>3.4709</td>
<td></td>
<td></td>
<td>233</td>
<td>0.38</td>
<td>0.7030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>327055</td>
<td>1.8930</td>
<td>8.0350</td>
<td></td>
<td></td>
<td>233</td>
<td>0.24</td>
<td>0.8140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>327055</td>
<td>4.9370</td>
<td>3.5001</td>
<td></td>
<td></td>
<td>233</td>
<td>1.41</td>
<td>0.1597</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>327325</td>
<td>11.8450</td>
<td>8.1134</td>
<td></td>
<td></td>
<td>233</td>
<td>1.46</td>
<td>0.1457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>327325</td>
<td>5.4414</td>
<td>3.4610</td>
<td></td>
<td></td>
<td>233</td>
<td>1.57</td>
<td>0.1173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>327933</td>
<td>-15.7985</td>
<td>8.0634</td>
<td></td>
<td></td>
<td>233</td>
<td>-1.96</td>
<td>0.0513</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>327933</td>
<td>2.1601</td>
<td>3.4703</td>
<td></td>
<td></td>
<td>233</td>
<td>0.62</td>
<td>0.5343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>331318</td>
<td>2.7174</td>
<td>8.0876</td>
<td></td>
<td></td>
<td>233</td>
<td>0.34</td>
<td>0.7372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>331318</td>
<td>1.5695</td>
<td>3.4677</td>
<td></td>
<td></td>
<td>233</td>
<td>0.45</td>
<td>0.6513</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>333524</td>
<td>-19.7928</td>
<td>8.0696</td>
<td></td>
<td></td>
<td>233</td>
<td>-2.45</td>
<td>0.0149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>333524</td>
<td>-2.8167</td>
<td>3.4675</td>
<td></td>
<td></td>
<td>233</td>
<td>-0.81</td>
<td>0.4174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>334672</td>
<td>-9.3318</td>
<td>8.1449</td>
<td></td>
<td></td>
<td>233</td>
<td>-1.15</td>
<td>0.2531</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>334672</td>
<td>-0.2781</td>
<td>3.3323</td>
<td></td>
<td></td>
<td>233</td>
<td>-0.08</td>
<td>0.9336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>336167</td>
<td>14.8738</td>
<td>7.9113</td>
<td></td>
<td></td>
<td>233</td>
<td>1.88</td>
<td>0.0613</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>336167</td>
<td>1.5025</td>
<td>3.6127</td>
<td></td>
<td></td>
<td>233</td>
<td>0.42</td>
<td>0.6779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>336843</td>
<td>-5.0848</td>
<td>8.0713</td>
<td></td>
<td></td>
<td>233</td>
<td>-0.63</td>
<td>0.5293</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>336843</td>
<td>2.1019</td>
<td>3.4667</td>
<td></td>
<td></td>
<td>233</td>
<td>0.61</td>
<td>0.5449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>337315</td>
<td>25.8868</td>
<td>8.0583</td>
<td></td>
<td></td>
<td>233</td>
<td>3.21</td>
<td>0.0015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>337315</td>
<td>0.8288</td>
<td>3.4775</td>
<td></td>
<td></td>
<td>233</td>
<td>0.24</td>
<td>0.8118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>342131</td>
<td>25.3350</td>
<td>8.0740</td>
<td></td>
<td></td>
<td>233</td>
<td>3.14</td>
<td>0.0019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>342131</td>
<td>-3.8521</td>
<td>3.4396</td>
<td></td>
<td></td>
<td>233</td>
<td>-1.12</td>
<td>0.2639</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>343097</td>
<td>-31.4949</td>
<td>8.0884</td>
<td></td>
<td></td>
<td>233</td>
<td>-3.89</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>343097</td>
<td>-3.3096</td>
<td>3.4580</td>
<td></td>
<td></td>
<td>233</td>
<td>-0.96</td>
<td>0.3395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>343233</td>
<td>15.6678</td>
<td>8.0496</td>
<td></td>
<td></td>
<td>233</td>
<td>1.95</td>
<td>0.0528</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>343233</td>
<td>2.3635</td>
<td>3.5038</td>
<td></td>
<td></td>
<td>233</td>
<td>0.67</td>
<td>0.5006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>354494</td>
<td>-4.5916</td>
<td>8.9587</td>
<td></td>
<td></td>
<td>233</td>
<td>-0.51</td>
<td>0.6088</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>354494</td>
<td>0.1748</td>
<td>3.4779</td>
<td></td>
<td></td>
<td>233</td>
<td>0.05</td>
<td>0.9600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solution for Random Procedure Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|-------|-------|
| Intercept | 358230 | -14.4145 | 8.0950 | 233 | -1.78 | 0.0763 |
| visc | 358230 | -0.03356 | 3.4757 | 233 | -0.01 | 0.9923 |
| Intercept | 359308 | -5.0957 | 8.1997 | 233 | -0.62 | 0.5349 |
| visc | 359308 | -1.6555 | 3.9395 | 233 | -0.42 | 0.6747 |
| Intercept | 364664 | -13.4061 | 8.0684 | 233 | -1.66 | 0.0979 |
| visc | 364664 | -1.6177 | 3.4582 | 233 | -0.47 | 0.6404 |
| Intercept | 367836 | -34.1645 | 8.0160 | 233 | -4.26 | <.0001 |
| visc | 367836 | -2.7668 | 3.4778 | 233 | -0.80 | 0.4271 |
| Intercept | 368973 | 2.2896 | 8.1935 | 233 | 0.28 | 0.7802 |
| visc | 368973 | 1.6484 | 3.9467 | 233 | 0.42 | 0.6766 |
| Intercept | 369941 | 12.6535 | 8.4890 | 233 | 1.49 | 0.1374 |
| visc | 369941 | 1.3538 | 3.5256 | 233 | 0.38 | 0.7013 |
| Intercept | 370942 | 9.8806 | 8.1686 | 233 | 1.21 | 0.2277 |
| visc | 370942 | 2.4606 | 3.9652 | 233 | 0.62 | 0.5355 |
| Intercept | 371021 | 10.8710 | 8.0735 | 233 | 1.35 | 0.1794 |
| visc | 371021 | 0.2867 | 3.4648 | 233 | 0.08 | 0.9341 |
| Intercept | 374068 | 24.1489 | 9.7907 | 233 | 2.47 | 0.0144 |
| visc | 374068 | 0.4478 | 3.4446 | 233 | 0.13 | 0.8967 |
| Intercept | 374687 | 7.3244 | 8.0545 | 233 | 0.91 | 0.3641 |
| visc | 374687 | -1.4046 | 3.4945 | 233 | -0.40 | 0.6881 |
| Intercept | 376004 | -23.1848 | 8.0579 | 233 | -2.88 | 0.0044 |
| visc | 376004 | -1.9599 | 3.4785 | 233 | -0.56 | 0.5737 |
| Intercept | 376252 | -2.1936 | 8.0439 | 233 | -0.27 | 0.7853 |
| visc | 376252 | 2.9699 | 3.5057 | 233 | 0.85 | 0.3978 |
| Intercept | 380166 | 6.6885 | 8.0181 | 233 | 0.83 | 0.4050 |
| visc | 380166 | 2.1226 | 3.4966 | 233 | 0.61 | 0.5444 |
| Intercept | 380998 | -10.1333 | 8.0698 | 233 | -1.26 | 0.2105 |
| visc | 380998 | -4.8899 | 3.4617 | 233 | -1.41 | 0.1591 |
| Intercept | 383193 | -3.1909 | 8.0574 | 233 | -0.40 | 0.6925 |
| visc | 383193 | 0.6861 | 3.4608 | 233 | 0.20 | 0.8430 |
| Intercept | 383744 | -20.0394 | 8.1369 | 233 | -2.46 | 0.0145 |
| visc | 383744 | 1.0100 | 3.4234 | 233 | 0.30 | 0.7682 |
| Intercept | 385151 | 10.4512 | 8.1850 | 233 | 1.28 | 0.2029 |
| visc | 385151 | 2.1018 | 3.9476 | 233 | 0.53 | 0.5949 |
| Intercept | 386040 | -30.5801 | 8.1267 | 233 | -3.76 | 0.0002 |
Solution for Random Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Participant/ID Number</th>
<th>Estimate</th>
<th>Std Err Pred</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>386040</td>
<td>-6.0407</td>
<td>3.3891</td>
<td>233</td>
<td>-1.78</td>
<td>0.0760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>386488</td>
<td>-8.7943</td>
<td>8.0799</td>
<td>233</td>
<td>-1.09</td>
<td>0.2775</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>386488</td>
<td>-3.9075</td>
<td>3.4779</td>
<td>233</td>
<td>-1.12</td>
<td>0.2624</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>386758</td>
<td>9.8192</td>
<td>8.1056</td>
<td>233</td>
<td>1.21</td>
<td>0.2270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>386758</td>
<td>-0.7116</td>
<td>3.4273</td>
<td>233</td>
<td>-0.21</td>
<td>0.8357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>387658</td>
<td>-12.2296</td>
<td>8.0984</td>
<td>233</td>
<td>-1.51</td>
<td>0.1324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>387658</td>
<td>4.0702</td>
<td>3.4421</td>
<td>233</td>
<td>1.18</td>
<td>0.2382</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>392316</td>
<td>-11.3545</td>
<td>8.0796</td>
<td>233</td>
<td>-1.41</td>
<td>0.1613</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>392316</td>
<td>1.4799</td>
<td>3.4498</td>
<td>233</td>
<td>0.43</td>
<td>0.6683</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>393936</td>
<td>-18.6853</td>
<td>8.0766</td>
<td>233</td>
<td>-2.31</td>
<td>0.0216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>393936</td>
<td>0.3369</td>
<td>3.4643</td>
<td>233</td>
<td>0.10</td>
<td>0.9226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>394588</td>
<td>-40.3634</td>
<td>8.1444</td>
<td>233</td>
<td>-4.96</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>394588</td>
<td>-2.1937</td>
<td>3.9667</td>
<td>233</td>
<td>-0.55</td>
<td>0.5808</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>397661</td>
<td>-34.9027</td>
<td>8.0717</td>
<td>233</td>
<td>-4.32</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>397661</td>
<td>-1.2971</td>
<td>3.4656</td>
<td>233</td>
<td>-0.37</td>
<td>0.7085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>397931</td>
<td>-20.4450</td>
<td>9.7041</td>
<td>233</td>
<td>-2.11</td>
<td>0.0362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>397931</td>
<td>-1.2698</td>
<td>3.5407</td>
<td>233</td>
<td>-0.36</td>
<td>0.7202</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>1</td>
<td>127</td>
<td>1.62</td>
<td>0.2061</td>
</tr>
</tbody>
</table>
The MEANS Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>N</th>
<th>Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>Participant/ID Number</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>slope</td>
<td>Std Err Pred</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>SlpSE</td>
<td>PCC/Number</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>pccn</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>dvdate</td>
<td>Visit/Date/#3 (1)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>vis</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>urine24_c</td>
<td>24hr Urine (dL/24hr)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>surice_ca</td>
<td>Serum:Uric Acid (mg/dL) (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>Serum:HDL (mg/dL) (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>albe_ca</td>
<td>Urine:Albumin Excr (mg/24hr) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ecitre_ca</td>
<td>Urine:Citrate Excr (mg/24h) (c)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>esode_cc</td>
<td>Urine:Sodium Excr (mEq/24h) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>xbdvdate</td>
<td>Visit/Date</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>cic</td>
<td>Correct Iothalamate Clear # 10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>bsa_c</td>
<td>BSA (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>hdyn</td>
<td>Hypertension yes/no # 12</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>bmi_c</td>
<td>BMI (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>age</td>
<td>Age of participant</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>MDRD GFR</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrskvs</td>
<td>MR K Vol/Sum Ster</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrrcvs</td>
<td>MR C Vol/Sum Reg</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>visc</td>
<td>Relative Visit</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrtcps</td>
<td>Percent MR Cyst Vol</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lmrskvs</td>
<td>Log10 MR K Vol/Sum Ster</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lmrrevs</td>
<td>Log10 MR C Vol/Sum Reg</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>Log10 Urine:Albumin Excr (mg/24hr) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>lctire_ca</td>
<td>Log10 Urine:Citrate Excr (mg/24h) (c)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>lMDRD_GFR</td>
<td>Log10 MDRD GFR</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lrbf</td>
<td>Log10 Renal Blood Flow Corrected for BSA</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>lrvr</td>
<td>Log10 RVR corrected for BSA</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>lrpf</td>
<td>Log10 Remal Plasma Flow</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>lff</td>
<td>Log10 Filtration Fraction</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>race</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>sex</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>ind1_cic</td>
<td>CIC < or >= 100?</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ind2_cic</td>
<td>CIC < or >= 85?</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>genetyp</td>
<td>Gene Type</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Avgsystol</td>
<td>Average Systolic BP over years</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Avgdiastol</td>
<td>Average Diastolic BP over years</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>2</td>
<td>Female, Male</td>
</tr>
<tr>
<td>hdyn</td>
<td>2</td>
<td>N, Y</td>
</tr>
</tbody>
</table>

Number of observations: 131

NOTE: Due to missing values, only 107 observations can be used in this analysis.
The GLM Procedure

Dependent Variable: slope

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12</td>
<td>276.0070651</td>
<td>23.0005888</td>
<td>3.98</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>94</td>
<td>542.9077272</td>
<td>5.7756141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>106</td>
<td>818.9147923</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>1.07149888</td>
<td>1.07149888</td>
<td>0.19</td>
<td>0.6677</td>
</tr>
<tr>
<td>hdyn</td>
<td>1</td>
<td>0.62213512</td>
<td>0.62213512</td>
<td>0.11</td>
<td>0.7435</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>3.30835491</td>
<td>3.30835491</td>
<td>0.57</td>
<td>0.4510</td>
</tr>
<tr>
<td>lrbf</td>
<td>1</td>
<td>16.57329303</td>
<td>16.57329303</td>
<td>2.87</td>
<td>0.0936</td>
</tr>
<tr>
<td>bmi_c</td>
<td>1</td>
<td>0.22247060</td>
<td>0.22247060</td>
<td>0.04</td>
<td>0.8448</td>
</tr>
<tr>
<td>lmrrcvs</td>
<td>1</td>
<td>98.61953658</td>
<td>98.61953658</td>
<td>17.08</td>
<td><.0001</td>
</tr>
<tr>
<td>urine24_c</td>
<td>1</td>
<td>0.74458143</td>
<td>0.74458143</td>
<td>0.13</td>
<td>0.7204</td>
</tr>
<tr>
<td>esode_cc</td>
<td>1</td>
<td>1.99366911</td>
<td>1.99366911</td>
<td>0.35</td>
<td>0.5583</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>1</td>
<td>3.56476552</td>
<td>3.56476552</td>
<td>0.62</td>
<td>0.4341</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>1</td>
<td>15.19032625</td>
<td>15.19032625</td>
<td>2.63</td>
<td>0.1082</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>1</td>
<td>0.44611998</td>
<td>0.44611998</td>
<td>0.08</td>
<td>0.7817</td>
</tr>
<tr>
<td>surice_ca</td>
<td>1</td>
<td>0.10375652</td>
<td>0.10375652</td>
<td>0.02</td>
<td>0.8937</td>
</tr>
</tbody>
</table>

| Source | DF | Estimate | Standard Error | t Value | Pr > |t| |
|----------------|----|-----------|----------------|---------|------|---|
| Intercept | | -4.474893758 | 9.08020447 | -0.49 | 0.6233 |
| sex Female | | -0.328162744 | 0.76189039 | -0.43 | 0.6677 |
| sex Male | | 0.000000000 | 0.000000000 | -0.198053650 | 0.03434762 | 0.76 | 0.4510 |
| hdyn N | | -0.198053650 | 0.60344762 | -0.33 | 0.7435 |
| hdyn Y | | 0.000000000 | 0.000000000 | 1.69 | 0.0936 |
| age | | 0.025971590 | 0.03431560 | 0.76 | 0.4510 |
| lrbf | | 4.028763738 | 2.37829914 | 1.69 | 0.0936 |
| bmi_c | | -0.011091930 | 0.05651580 | -0.20 | 0.8448 |
| lmrrcvs | | -3.041268585 | 0.73599079 | -4.13 | <.0001 |
| urine24_c | | 0.002281848 | 0.00388382 | 0.59 | 0.5583 |
| esode_cc | | 0.527178321 | 0.67102877 | 0.79 | 0.4341 |
The GLM Procedure

Dependent Variable: slope

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-------------|------------|----------------|---------|------|---|
| lpldle_ca | -0.012204050 | 0.00752523 | -1.62 | 0.1082 |
| lphdle_ca | 0.007219986 | 0.02597823 | 0.28 | 0.7817 |
| surice_ca | 0.042436923 | 0.31661776 | 0.13 | 0.8937 |

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.71196294</td>
<td>1.06288904</td>
<td>6.64907390</td>
</tr>
<tr>
<td>2</td>
<td>-3.74816630</td>
<td>-2.57870164</td>
<td>-1.16946466</td>
</tr>
<tr>
<td>3</td>
<td>-2.38209517</td>
<td>0.40194391</td>
<td>-2.78403908</td>
</tr>
<tr>
<td>4</td>
<td>-0.70655248</td>
<td>-1.87627268</td>
<td>1.16962019</td>
</tr>
<tr>
<td>5</td>
<td>0.18191143</td>
<td>-1.62503697</td>
<td>1.80694840</td>
</tr>
<tr>
<td>6</td>
<td>0.41679433</td>
<td>-0.80116695</td>
<td>1.21796128</td>
</tr>
<tr>
<td>7</td>
<td>1.55329636</td>
<td>0.10658211</td>
<td>1.44671426</td>
</tr>
<tr>
<td>8</td>
<td>2.64771317</td>
<td>1.44148986</td>
<td>1.20622331</td>
</tr>
<tr>
<td>9</td>
<td>8.00636753</td>
<td>0.24812094</td>
<td>7.75824659</td>
</tr>
<tr>
<td>10</td>
<td>0.16298043</td>
<td>0.03576754</td>
<td>0.12721288</td>
</tr>
<tr>
<td>11</td>
<td>2.11656744</td>
<td>1.39857582</td>
<td>0.71799162</td>
</tr>
<tr>
<td>12</td>
<td>-1.87055213</td>
<td>0.70874240</td>
<td>-2.57929454</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-4.88052287</td>
<td>-2.69345279</td>
<td>-2.18707009</td>
</tr>
<tr>
<td>15</td>
<td>-4.18054555</td>
<td>-1.75665142</td>
<td>-2.42389414</td>
</tr>
<tr>
<td>16</td>
<td>-3.66708516</td>
<td>-0.28862106</td>
<td>-3.37846411</td>
</tr>
<tr>
<td>17</td>
<td>-2.57118721</td>
<td>-0.95169357</td>
<td>-1.61949364</td>
</tr>
<tr>
<td>18</td>
<td>1.73651350</td>
<td>2.19233560</td>
<td>-0.45582209</td>
</tr>
<tr>
<td>19</td>
<td>3.1200385</td>
<td>0.37300786</td>
<td>2.74699600</td>
</tr>
<tr>
<td>20</td>
<td>0.14311399</td>
<td>-0.11859606</td>
<td>0.26171005</td>
</tr>
<tr>
<td>21</td>
<td>-3.96335457</td>
<td>-0.37963985</td>
<td>-3.58371471</td>
</tr>
<tr>
<td>22</td>
<td>-1.58246263</td>
<td>-0.69394250</td>
<td>-0.88852013</td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-1.49988656</td>
<td>-0.37856526</td>
<td>-1.12132130</td>
</tr>
<tr>
<td>25</td>
<td>0.18036035</td>
<td>-1.40809228</td>
<td>1.58845263</td>
</tr>
<tr>
<td>26</td>
<td>2.30563127</td>
<td>2.78632326</td>
<td>-0.48069199</td>
</tr>
<tr>
<td>27</td>
<td>0.54753796</td>
<td>0.14762446</td>
<td>0.39991350</td>
</tr>
<tr>
<td>28</td>
<td>-2.07726250</td>
<td>-1.46994897</td>
<td>-0.60731353</td>
</tr>
<tr>
<td>29</td>
<td>1.28501930</td>
<td>-0.85440490</td>
<td>2.13942419</td>
</tr>
<tr>
<td>30</td>
<td>-1.66875065</td>
<td>-1.27181695</td>
<td>-0.39693369</td>
</tr>
<tr>
<td>31</td>
<td>0.59141085</td>
<td>2.88437576</td>
<td>-2.29296490</td>
</tr>
<tr>
<td>32</td>
<td>0.80463450</td>
<td>1.18472857</td>
<td>-0.38099407</td>
</tr>
<tr>
<td>33</td>
<td>2.13782613</td>
<td>3.01192694</td>
<td>-0.87410081</td>
</tr>
<tr>
<td>34</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-0.64560326</td>
<td>0.15728725</td>
<td>-0.80289051</td>
</tr>
<tr>
<td>36</td>
<td>2.49640474</td>
<td>2.24933613</td>
<td>0.24706861</td>
</tr>
<tr>
<td>37</td>
<td>9.05872977</td>
<td>3.46104601</td>
<td>5.59768377</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>1.26367461</td>
<td>1.98022606</td>
<td>-0.71655146</td>
</tr>
<tr>
<td>39</td>
<td>-1.09850190</td>
<td>2.90287258</td>
<td>-4.00137447</td>
</tr>
<tr>
<td>40</td>
<td>0.69436877</td>
<td>0.37176406</td>
<td>0.32260471</td>
</tr>
<tr>
<td>41</td>
<td>-1.03447763</td>
<td>-0.35344515</td>
<td>-0.68103248</td>
</tr>
<tr>
<td>42</td>
<td>2.19233910</td>
<td>0.04783435</td>
<td>2.14450474</td>
</tr>
<tr>
<td>43</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.00000000</td>
<td>-1.18726408</td>
<td>1.18726408</td>
</tr>
<tr>
<td>45</td>
<td>0.00000000</td>
<td>0.41059891</td>
<td>-0.41059891</td>
</tr>
<tr>
<td>46</td>
<td>1.37689947</td>
<td>2.00317869</td>
<td>-0.62627923</td>
</tr>
<tr>
<td>47</td>
<td>-0.09530910</td>
<td>0.92942819</td>
<td>-1.02473729</td>
</tr>
<tr>
<td>48</td>
<td>0.67942915</td>
<td>-0.39680701</td>
<td>1.07623615</td>
</tr>
<tr>
<td>49</td>
<td>2.67731929</td>
<td>4.60189169</td>
<td>-1.92457240</td>
</tr>
<tr>
<td>50</td>
<td>-4.02856756</td>
<td>-2.30360957</td>
<td>-1.72495798</td>
</tr>
<tr>
<td>51</td>
<td>-0.76830456</td>
<td>1.42186979</td>
<td>-2.19017435</td>
</tr>
<tr>
<td>52</td>
<td>-2.41112864</td>
<td>1.95411074</td>
<td>-4.36523938</td>
</tr>
<tr>
<td>53</td>
<td>-0.47961709</td>
<td>-1.47522057</td>
<td>0.99560348</td>
</tr>
<tr>
<td>54</td>
<td>0.14008145</td>
<td>-0.00714315</td>
<td>0.14722461</td>
</tr>
<tr>
<td>55</td>
<td>0.00039054</td>
<td>0.10528871</td>
<td>-0.10489817</td>
</tr>
<tr>
<td>56</td>
<td>-2.59288970</td>
<td>-2.19347863</td>
<td>-0.39941107</td>
</tr>
<tr>
<td>57</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>-0.62082193</td>
<td>-0.17162992</td>
<td>-0.44919201</td>
</tr>
<tr>
<td>59</td>
<td>-1.03600217</td>
<td>-0.86053798</td>
<td>-0.17546420</td>
</tr>
<tr>
<td>60</td>
<td>-0.29243448</td>
<td>-0.07495219</td>
<td>-0.21748229</td>
</tr>
<tr>
<td>61</td>
<td>-1.66589882</td>
<td>-0.97987944</td>
<td>-0.68601938</td>
</tr>
<tr>
<td>62</td>
<td>-2.10848305</td>
<td>-2.12428532</td>
<td>0.01580227</td>
</tr>
<tr>
<td>63</td>
<td>1.34855322</td>
<td>-0.03761571</td>
<td>1.38616894</td>
</tr>
<tr>
<td>64</td>
<td>2.41727841</td>
<td>0.89404446</td>
<td>1.52323395</td>
</tr>
<tr>
<td>65</td>
<td>-1.88842724</td>
<td>-0.96352043</td>
<td>-0.92490681</td>
</tr>
<tr>
<td>66</td>
<td>-3.73925416</td>
<td>-2.89306990</td>
<td>-0.84618426</td>
</tr>
<tr>
<td>67</td>
<td>-6.84313800</td>
<td>-3.84651173</td>
<td>-2.99662627</td>
</tr>
<tr>
<td>68</td>
<td>0.42490097</td>
<td>-1.69097148</td>
<td>2.11587246</td>
</tr>
<tr>
<td>69</td>
<td>-2.23433485</td>
<td>-0.21835303</td>
<td>-2.01598182</td>
</tr>
<tr>
<td>70</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>-1.24934158</td>
<td>-0.44902869</td>
<td>-0.80031289</td>
</tr>
<tr>
<td>72</td>
<td>-6.07681033</td>
<td>-1.72679157</td>
<td>-4.35001876</td>
</tr>
<tr>
<td>73</td>
<td>-3.82037618</td>
<td>0.70072766</td>
<td>-4.52110384</td>
</tr>
<tr>
<td>74</td>
<td>1.54451986</td>
<td>1.08812207</td>
<td>0.45639779</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.22051009</td>
<td>-0.62740861</td>
<td>0.84791870</td>
</tr>
<tr>
<td>76 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>0.62958507</td>
<td>-2.42913539</td>
<td>3.05872045</td>
</tr>
<tr>
<td>78</td>
<td>-2.91403302</td>
<td>-0.13422725</td>
<td>-2.77980578</td>
</tr>
<tr>
<td>79</td>
<td>2.86878824</td>
<td>2.46466446</td>
<td>0.40412378</td>
</tr>
<tr>
<td>80</td>
<td>-2.87957220</td>
<td>-1.66085644</td>
<td>-1.21871576</td>
</tr>
<tr>
<td>81 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>-1.19752906</td>
<td>-1.18742699</td>
<td>-0.01010207</td>
</tr>
<tr>
<td>84</td>
<td>0.19281413</td>
<td>0.38784579</td>
<td>-0.19503166</td>
</tr>
<tr>
<td>85</td>
<td>3.76480771</td>
<td>1.86505474</td>
<td>1.89975297</td>
</tr>
<tr>
<td>86</td>
<td>4.14898819</td>
<td>0.03521252</td>
<td>4.11377567</td>
</tr>
<tr>
<td>87 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>-2.86538177</td>
<td>-0.36672419</td>
<td>-2.49865758</td>
</tr>
<tr>
<td>89</td>
<td>3.32643573</td>
<td>1.63967959</td>
<td>1.68675613</td>
</tr>
<tr>
<td>90</td>
<td>0.00000000</td>
<td>-2.07053238</td>
<td>2.07053238</td>
</tr>
<tr>
<td>91 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>1.32477775</td>
<td>-1.59690994</td>
<td>2.92168769</td>
</tr>
<tr>
<td>93</td>
<td>4.93701391</td>
<td>0.48311655</td>
<td>4.45389736</td>
</tr>
<tr>
<td>94 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>2.16007024</td>
<td>1.04007021</td>
<td>1.12000003</td>
</tr>
<tr>
<td>96</td>
<td>1.56948218</td>
<td>2.64704278</td>
<td>-1.07756060</td>
</tr>
<tr>
<td>97</td>
<td>-2.81671718</td>
<td>-3.11871326</td>
<td>0.30199608</td>
</tr>
<tr>
<td>98</td>
<td>-0.27812012</td>
<td>-1.37598690</td>
<td>1.09786678</td>
</tr>
<tr>
<td>99</td>
<td>1.50245616</td>
<td>0.11281137</td>
<td>1.38964479</td>
</tr>
<tr>
<td>100</td>
<td>2.10190188</td>
<td>1.31604739</td>
<td>0.78585449</td>
</tr>
<tr>
<td>101</td>
<td>0.82881714</td>
<td>1.63409085</td>
<td>-0.80527372</td>
</tr>
<tr>
<td>102</td>
<td>-3.85208039</td>
<td>-0.10661857</td>
<td>-3.74546182</td>
</tr>
<tr>
<td>103 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>2.36353796</td>
<td>0.28446929</td>
<td>2.07906867</td>
</tr>
<tr>
<td>105</td>
<td>0.17476666</td>
<td>-0.15240038</td>
<td>0.32716704</td>
</tr>
<tr>
<td>106</td>
<td>-0.03355874</td>
<td>-0.60182179</td>
<td>0.56826305</td>
</tr>
<tr>
<td>107 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>-1.61773122</td>
<td>1.84797876</td>
<td>-3.46570998</td>
</tr>
<tr>
<td>109 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 *</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>112 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.28665804</td>
<td>1.30836704</td>
<td>-1.02170900</td>
</tr>
<tr>
<td>114</td>
<td>0.44781852</td>
<td>1.36416448</td>
<td>-0.91634596</td>
</tr>
<tr>
<td>115 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>2.96987986</td>
<td>0.64985669</td>
<td>2.32002317</td>
</tr>
<tr>
<td>118</td>
<td>2.12255584</td>
<td>0.94868550</td>
<td>1.17387034</td>
</tr>
<tr>
<td>119</td>
<td>-4.88986382</td>
<td>-0.65342269</td>
<td>-4.23644113</td>
</tr>
<tr>
<td>120</td>
<td>0.68610241</td>
<td>-0.01490604</td>
<td>0.70100845</td>
</tr>
<tr>
<td>121</td>
<td>1.01003721</td>
<td>-1.70988799</td>
<td>2.71992519</td>
</tr>
<tr>
<td>122 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>-6.04069374</td>
<td>-3.13759956</td>
<td>-2.90309418</td>
</tr>
<tr>
<td>124</td>
<td>-3.90746752</td>
<td>-2.03494090</td>
<td>-1.87252662</td>
</tr>
<tr>
<td>125 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>4.07017840</td>
<td>-0.82506819</td>
<td>4.89524660</td>
</tr>
<tr>
<td>127</td>
<td>1.47987122</td>
<td>-1.10136399</td>
<td>2.58123521</td>
</tr>
<tr>
<td>128 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>-2.19371375</td>
<td>-2.84166741</td>
<td>0.64795367</td>
</tr>
<tr>
<td>130 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>-1.26983553</td>
<td>-1.57703606</td>
<td>0.30720053</td>
</tr>
</tbody>
</table>

* Observation was not used in this analysis

Sum of Residuals	-0.0000000
Sum of Squared Residuals	542.9077272
Sum of Squared Residuals - Error SS	-0.0000000
First Order Autocorrelation	0.1298111
Durbin-Watson D	1.6587717
The Mixed Procedure

Model Information

| Model Information | |
|-------------------------|--|---|
| Data Set | WORK.PERSON |
| Dependent Variable | cic |
| Covariance Structure | Variance Components |
| Subject Effect | pkdid |
| Estimation Method | ML |
| Residual Variance Method| Profile |
| Fixed Effects SE Method | Model-Based |
| Degrees of Freedom Method| Containment |

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>131</td>
<td>200922 201800 201877 203328 204555 205758 206816 208280 208324 209281 213454 214376 215052 216086 220068 223343 223534 223635 224502 226640 229428 229733 232174 234053 234650 234795 235752 236202 237192 239960 241501 242715 243560 243738 244111 244831 245990 246620 247880 248712 252086 255765 256171 258950 259940 263617 264225 264348 265171 268455 271043 271460 271662 271684 273214 273225 277490 281000 281977 283722 283935 285601 286095 290336 292362 293317 293598 294105 294511 295106 295940 298515 299663 300641 300696 300911 301157 301372 303868 304860 306546 312317 313195 313307 313893 316110 318562 320182 320957 321611 323837 325290 327325 327933 331318 333524 334672 336167 336843 337315 342131 343097 343233 354494 358230 359308 364664 367836 368973 369941 370942 371021 374068 374687 376004 376252 380166 380998 383193 383744 385151 386040 386488 386758 387658 392316 393936 394588 397661 397931</td>
</tr>
</tbody>
</table>

Dimensions

- **Covariance Parameters**: 3
- **Columns in X**: 2
- **Columns in Z Per Subject**: 2
- **Subjects**: 131
- **Max Obs Per Subject**: 4
- **Observations Used**: 491
- **Observations Not Used**: 33
- **Total Observations**: 524

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>4562.47580832</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4297.82120188</td>
<td>0.00009847</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4297.64334257</td>
<td>0.00000107</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4297.64150940</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>pkdid</td>
<td>365.92</td>
</tr>
<tr>
<td>visc</td>
<td>pkdid</td>
<td>19.6124</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>186.63</td>
</tr>
</tbody>
</table>

Fit Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
<td>4297.6</td>
</tr>
<tr>
<td>AIC (smaller is better)</td>
<td>4307.6</td>
</tr>
<tr>
<td>AICC (smaller is better)</td>
<td>4307.8</td>
</tr>
<tr>
<td>BIC (smaller is better)</td>
<td>4322.0</td>
</tr>
</tbody>
</table>

Solution for Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>99.8518</td>
<td>1.9610</td>
<td>129</td>
<td>50.92</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>-0.8551</td>
<td>0.6727</td>
<td>127</td>
<td>-1.27</td>
<td>0.2061</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|---------|-------|-----|
| Intercept | 200922 | 9.8709 | 7.9538 | 233 | 1.24 | 0.2158 |
| visc | 200922 | 7.7120 | 3.5031 | 233 | 2.20 | 0.0287 |
| Intercept | 201800 | -21.5006 | 8.1266 | 233 | -2.65 | 0.0087 |
| visc | 201800 | -3.7482 | 3.4580 | 233 | -1.08 | 0.2795 |
| Intercept | 201877 | -18.8041 | 8.0775 | 233 | -2.33 | 0.0208 |
| visc | 201877 | -2.3821 | 3.4639 | 233 | -0.69 | 0.4923 |
| Intercept | 203328 | -1.8301 | 8.2349 | 233 | -0.22 | 0.8243 |
| visc | 203328 | -0.7067 | 3.4168 | 233 | -0.21 | 0.8363 |
| Intercept | 204555 | -9.6016 | 8.0821 | 233 | -1.19 | 0.2360 |
| visc | 204555 | 0.1819 | 3.4470 | 233 | 0.05 | 0.9580 |
| Intercept | 205758 | -11.9125 | 8.0769 | 233 | -1.47 | 0.1416 |
| visc | 205758 | 0.4168 | 3.4282 | 233 | 0.12 | 0.9033 |
| Intercept | 206816 | 10.9525 | 8.0726 | 233 | 1.36 | 0.1762 |
| visc | 206816 | 1.5533 | 3.4822 | 233 | 0.45 | 0.6560 |
| Intercept | 208280 | -2.2785 | 8.0860 | 233 | -0.28 | 0.7784 |
| visc | 208280 | 2.6477 | 3.4703 | 233 | 0.76 | 0.4463 |
| Intercept | 208324 | 8.0864 | 8.0726 | 233 | 1.00 | 0.3175 |
| visc | 208324 | 8.0064 | 3.4710 | 233 | 2.31 | 0.0220 |
| Intercept | 209281 | 21.0191 | 8.1145 | 233 | 2.59 | 0.0102 |
| visc | 209281 | 0.1630 | 3.5007 | 233 | 0.05 | 0.9629 |
| Intercept | 213454 | 11.2299 | 8.1381 | 233 | 1.38 | 0.1689 |
| visc | 213454 | 2.1166 | 3.4074 | 233 | 0.62 | 0.5351 |
| Intercept | 214376 | 11.7746 | 8.0938 | 233 | 1.45 | 0.1471 |
| visc | 214376 | -1.8706 | 3.4834 | 233 | -0.54 | 0.5918 |
| Intercept | 215052 | 25.8528 | 8.5918 | 233 | 3.01 | 0.0029 |
| visc | 215052 | 1.4588 | 3.3789 | 233 | 0.43 | 0.6663 |
| Intercept | 216086 | -22.0739 | 8.0995 | 233 | -2.73 | 0.0069 |
| visc | 216086 | -4.8805 | 3.4800 | 233 | -1.40 | 0.1621 |
| Intercept | 220068 | -26.8827 | 8.1142 | 233 | -3.31 | 0.0011 |
| visc | 220068 | -4.1805 | 3.4366 | 233 | -1.22 | 0.2250 |
| Intercept | 223343 | 11.8419 | 8.0914 | 233 | 1.46 | 0.1447 |
| visc | 223343 | -3.6671 | 3.4287 | 233 | -1.07 | 0.2859 |
| Intercept | 223534 | 2.5869 | 8.2222 | 233 | 0.31 | 0.7533 |
| visc | 223534 | -2.5712 | 3.9385 | 233 | -0.65 | 0.5145 |
| Intercept | 223635 | 29.4010 | 8.2412 | 233 | 3.57 | 0.0004 |
The Mixed Procedure

Solution for Random Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Participant/ID Number</th>
<th>Estimate</th>
<th>Std Err Pred</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>223635</td>
<td>1.7365</td>
<td>3.2774</td>
<td>233</td>
<td>0.53</td>
<td>0.5967</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>224502</td>
<td>-10.5019</td>
<td>7.9425</td>
<td>233</td>
<td>-1.32</td>
<td>0.1874</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>224502</td>
<td>3.1200</td>
<td>3.4739</td>
<td>233</td>
<td>0.90</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>226640</td>
<td>-4.2333</td>
<td>8.0815</td>
<td>233</td>
<td>-0.52</td>
<td>0.6009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>224502</td>
<td>3.1200</td>
<td>3.4739</td>
<td>233</td>
<td>0.90</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>226640</td>
<td>-4.2333</td>
<td>8.0815</td>
<td>233</td>
<td>-0.52</td>
<td>0.6009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>224502</td>
<td>3.1200</td>
<td>3.4739</td>
<td>233</td>
<td>0.90</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>226640</td>
<td>-4.2333</td>
<td>8.0815</td>
<td>233</td>
<td>-0.52</td>
<td>0.6009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>224502</td>
<td>3.1200</td>
<td>3.4739</td>
<td>233</td>
<td>0.90</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>226640</td>
<td>-4.2333</td>
<td>8.0815</td>
<td>233</td>
<td>-0.52</td>
<td>0.6009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>224502</td>
<td>3.1200</td>
<td>3.4739</td>
<td>233</td>
<td>0.90</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>226640</td>
<td>-4.2333</td>
<td>8.0815</td>
<td>233</td>
<td>-0.52</td>
<td>0.6009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>224502</td>
<td>3.1200</td>
<td>3.4739</td>
<td>233</td>
<td>0.90</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>226640</td>
<td>-4.2333</td>
<td>8.0815</td>
<td>233</td>
<td>-0.52</td>
<td>0.6009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>224502</td>
<td>3.1200</td>
<td>3.4739</td>
<td>233</td>
<td>0.90</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>226640</td>
<td>-4.2333</td>
<td>8.0815</td>
<td>233</td>
<td>-0.52</td>
<td>0.6009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>224502</td>
<td>3.1200</td>
<td>3.4739</td>
<td>233</td>
<td>0.90</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>226640</td>
<td>-4.2333</td>
<td>8.0815</td>
<td>233</td>
<td>-0.52</td>
<td>0.6009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>224502</td>
<td>3.1200</td>
<td>3.4739</td>
<td>233</td>
<td>0.90</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>226640</td>
<td>-4.2333</td>
<td>8.0815</td>
<td>233</td>
<td>-0.52</td>
<td>0.6009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>224502</td>
<td>3.1200</td>
<td>3.4739</td>
<td>233</td>
<td>0.90</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>226640</td>
<td>-4.2333</td>
<td>8.0815</td>
<td>233</td>
<td>-0.52</td>
<td>0.6009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>224502</td>
<td>3.1200</td>
<td>3.4739</td>
<td>233</td>
<td>0.90</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>226640</td>
<td>-4.2333</td>
<td>8.0815</td>
<td>233</td>
<td>-0.52</td>
<td>0.6009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>224502</td>
<td>3.1200</td>
<td>3.4739</td>
<td>233</td>
<td>0.90</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>226640</td>
<td>-4.2333</td>
<td>8.0815</td>
<td>233</td>
<td>-0.52</td>
<td>0.6009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>224502</td>
<td>3.1200</td>
<td>3.4739</td>
<td>233</td>
<td>0.90</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>226640</td>
<td>-4.2333</td>
<td>8.0815</td>
<td>233</td>
<td>-0.52</td>
<td>0.6009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Mixed Procedure

Solution for Random Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Participant/ID Number</th>
<th>Estimate</th>
<th>Std Pred</th>
<th>Std Err</th>
<th>Pred</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>244831</td>
<td>12.0548</td>
<td>8.1678</td>
<td>12.0548</td>
<td>8.1678</td>
<td>233</td>
<td>1.48</td>
<td>0.1413</td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>244831</td>
<td>2.4964</td>
<td>3.4806</td>
<td>233</td>
<td>0.72</td>
<td>0.4740</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>245990</td>
<td>22.9750</td>
<td>8.1117</td>
<td>233</td>
<td>2.83</td>
<td>0.0050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>245990</td>
<td>9.0587</td>
<td>3.2941</td>
<td>233</td>
<td>2.75</td>
<td>0.0064</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>246620</td>
<td>7.3146</td>
<td>8.1822</td>
<td>233</td>
<td>0.89</td>
<td>0.3723</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>246620</td>
<td>1.2637</td>
<td>3.4229</td>
<td>233</td>
<td>0.37</td>
<td>0.7123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>247880</td>
<td>20.9017</td>
<td>8.1612</td>
<td>233</td>
<td>2.56</td>
<td>0.0111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>247880</td>
<td>-1.0985</td>
<td>3.3378</td>
<td>233</td>
<td>-0.33</td>
<td>0.7424</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>248712</td>
<td>13.8855</td>
<td>8.2001</td>
<td>233</td>
<td>1.69</td>
<td>0.0917</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>248712</td>
<td>0.6944</td>
<td>3.4201</td>
<td>233</td>
<td>0.20</td>
<td>0.8393</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>252086</td>
<td>-20.9511</td>
<td>8.1647</td>
<td>233</td>
<td>-2.57</td>
<td>0.0109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>252086</td>
<td>-1.0345</td>
<td>3.4354</td>
<td>233</td>
<td>-0.30</td>
<td>0.7636</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>255765</td>
<td>12.5276</td>
<td>8.0826</td>
<td>233</td>
<td>1.55</td>
<td>0.1225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>255765</td>
<td>2.1923</td>
<td>3.4720</td>
<td>233</td>
<td>0.63</td>
<td>0.5284</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>256171</td>
<td>21.5266</td>
<td>7.9345</td>
<td>233</td>
<td>2.71</td>
<td>0.0072</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>256171</td>
<td>-0.1267</td>
<td>3.5389</td>
<td>233</td>
<td>-0.04</td>
<td>0.9715</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>258950</td>
<td>-9.8355</td>
<td>11.1928</td>
<td>233</td>
<td>-0.88</td>
<td>0.3805</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>258950</td>
<td>0</td>
<td>4.4286</td>
<td>233</td>
<td>0.00</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>259940</td>
<td>17.3165</td>
<td>11.9282</td>
<td>233</td>
<td>1.55</td>
<td>0.1232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>259940</td>
<td>0</td>
<td>4.4286</td>
<td>233</td>
<td>0.00</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>263617</td>
<td>0.3051</td>
<td>8.1201</td>
<td>233</td>
<td>0.04</td>
<td>0.9701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>263617</td>
<td>1.3769</td>
<td>3.4574</td>
<td>233</td>
<td>0.40</td>
<td>0.6908</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>264225</td>
<td>36.2499</td>
<td>8.1059</td>
<td>233</td>
<td>4.47</td>
<td><.0001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>264225</td>
<td>0.09531</td>
<td>3.4187</td>
<td>233</td>
<td>-0.03</td>
<td>0.9778</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>264348</td>
<td>19.8760</td>
<td>8.0494</td>
<td>233</td>
<td>2.47</td>
<td>0.0143</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>264348</td>
<td>0.6794</td>
<td>3.4767</td>
<td>233</td>
<td>0.20</td>
<td>0.8452</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>265171</td>
<td>18.4988</td>
<td>8.1021</td>
<td>233</td>
<td>2.28</td>
<td>0.0233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>265171</td>
<td>2.6773</td>
<td>3.4558</td>
<td>233</td>
<td>0.77</td>
<td>0.4393</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>268455</td>
<td>-32.8406</td>
<td>8.2004</td>
<td>233</td>
<td>-4.00</td>
<td><.0001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>268455</td>
<td>-4.0286</td>
<td>3.4247</td>
<td>233</td>
<td>-1.18</td>
<td>0.2407</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>271043</td>
<td>7.0382</td>
<td>8.0479</td>
<td>233</td>
<td>0.87</td>
<td>0.3827</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>271043</td>
<td>-0.7683</td>
<td>3.3200</td>
<td>233</td>
<td>-0.23</td>
<td>0.8172</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>271460</td>
<td>-5.9326</td>
<td>8.0629</td>
<td>233</td>
<td>-0.74</td>
<td>0.4626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viss</td>
<td>271460</td>
<td>-2.4111</td>
<td>3.4664</td>
<td>233</td>
<td>-0.70</td>
<td>0.4874</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>271662</td>
<td>-3.7617</td>
<td>8.8992</td>
<td>233</td>
<td>-0.42</td>
<td>0.6729</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Mixed Procedure

Solution for Random Procedure Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|-----|---------|-------|---|
| visc | 271662 | -0.4796 | 4.3088 | 233 | -0.11 | 0.9115 |
| Intercept | 271684 | 15.3280 | 8.1629 | 233 | 1.88 | 0.0617 |
| visc | 271684 | 0.1401 | 3.4130 | 233 | 0.04 | 0.9673 |
| Intercept | 273214 | 18.9258 | 7.9278 | 233 | 2.39 | 0.0178 |
| visc | 273214 | 0.000391 | 3.5427 | 233 | 0.00 | 0.9999 |
| Intercept | 273225 | -25.8435 | 9.0021 | 233 | -2.87 | 0.0045 |
| visc | 273225 | -2.5929 | 3.4509 | 233 | -0.75 | 0.4532 |
| Intercept | 277490 | -15.9012 | 8.1186 | 233 | -1.96 | 0.0514 |
| visc | 277490 | -0.3818 | 3.4258 | 233 | -0.11 | 0.9114 |
| Intercept | 281000 | 6.9506 | 8.0366 | 233 | 0.86 | 0.3880 |
| visc | 281000 | -0.6208 | 3.4801 | 233 | -0.18 | 0.8586 |
| Intercept | 281977 | 14.4575 | 8.1048 | 233 | 1.78 | 0.0758 |
| visc | 281977 | -1.0360 | 3.4517 | 233 | -0.30 | 0.7643 |
| Intercept | 283722 | 47.9924 | 8.0319 | 233 | 5.98 | <.0001 |
| visc | 283722 | -0.2924 | 3.4505 | 233 | -0.08 | 0.9325 |
| Intercept | 283935 | -29.6781 | 8.3021 | 233 | -3.57 | 0.0004 |
| visc | 283935 | -1.6659 | 3.8749 | 233 | -0.43 | 0.6676 |
| Intercept | 285601 | 30.3623 | 8.1266 | 233 | 3.74 | 0.0002 |
| visc | 285601 | -2.1085 | 3.4521 | 233 | -0.61 | 0.5419 |
| Intercept | 286095 | 19.1998 | 8.0833 | 233 | 2.38 | 0.0183 |
| visc | 286095 | 1.3486 | 3.4561 | 233 | 0.39 | 0.6967 |
| Intercept | 290336 | 18.7523 | 8.1987 | 233 | 2.29 | 0.0231 |
| visc | 290336 | 2.4173 | 3.4199 | 233 | 0.71 | 0.4804 |
| Intercept | 292362 | -9.1241 | 8.2722 | 233 | -1.10 | 0.2712 |
| visc | 292362 | -1.8884 | 3.3819 | 233 | -0.56 | 0.5771 |
| Intercept | 293317 | -27.0966 | 7.9906 | 233 | -3.39 | 0.0008 |
| visc | 293317 | -3.7393 | 3.4246 | 233 | -1.09 | 0.2760 |
| Intercept | 293598 | -31.9300 | 8.2472 | 233 | -3.87 | 0.0001 |
| visc | 293598 | -6.8431 | 3.2210 | 233 | -2.12 | 0.0347 |
| Intercept | 294105 | -13.3069 | 8.5759 | 233 | -1.55 | 0.1221 |
| visc | 294105 | 0.4249 | 3.4898 | 233 | 0.12 | 0.9032 |
| Intercept | 294511 | 5.5247 | 8.1421 | 233 | 0.68 | 0.4981 |
| visc | 294511 | -2.2343 | 3.4356 | 233 | -0.65 | 0.5161 |
| Intercept | 295106 | 2.3658 | 8.1079 | 233 | 0.29 | 0.7707 |
| visc | 295106 | 1.6415 | 3.3905 | 233 | 0.48 | 0.6287 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|---------|------------------------|----------|--------------|-----|---------|------|---|
| Intercept | 295940 | -11.0429 | 8.0303 | 233 | -1.38 | 0.1704 |
| visc | 295940 | -1.2493 | 3.4390 | 233 | -0.36 | 0.7167 |
| Intercept | 298515 | -16.6225 | 8.0492 | 233 | -2.07 | 0.0400 |
| visc | 298515 | -6.0768 | 3.4702 | 233 | -1.75 | 0.0812 |
| Intercept | 299663 | -17.6211 | 8.1477 | 233 | -2.16 | 0.0316 |
| visc | 299663 | -3.8204 | 3.3649 | 233 | -1.14 | 0.2574 |
| Intercept | 300641 | 6.7530 | 8.0520 | 233 | 0.84 | 0.4025 |
| visc | 300641 | 1.5445 | 3.4615 | 233 | 0.45 | 0.6559 |
| Intercept | 300696 | -3.2218 | 8.0883 | 233 | -0.40 | 0.6908 |
| visc | 300696 | 0.2205 | 3.4473 | 233 | 0.06 | 0.9491 |
| Intercept | 301157 | -15.3103 | 8.0656 | 233 | -1.90 | 0.0589 |
| visc | 301157 | 0.6296 | 3.4685 | 233 | 0.18 | 0.8561 |
| Intercept | 301372 | -1.1176 | 8.0461 | 233 | -0.14 | 0.8897 |
| visc | 301372 | -2.9140 | 3.4912 | 233 | -0.83 | 0.4047 |
| Intercept | 303868 | 8.2291 | 8.1087 | 233 | 1.01 | 0.3112 |
| visc | 303868 | 2.8688 | 3.4253 | 233 | 0.84 | 0.4031 |
| Intercept | 304860 | -10.4506 | 8.0485 | 233 | -1.30 | 0.1954 |
| visc | 304860 | -2.8796 | 3.4771 | 233 | -0.83 | 0.4084 |
| Intercept | 306546 | -12.740 | 8.1159 | 233 | -1.57 | 0.1186 |
| visc | 306546 | 4.8926 | 3.4462 | 233 | 1.42 | 0.1570 |
| Intercept | 312317 | -3.3277 | 8.0421 | 233 | -0.41 | 0.6794 |
| visc | 312317 | -0.05770 | 3.4970 | 233 | -0.02 | 0.9868 |
| Intercept | 313195 | 1.8383 | 8.1056 | 233 | 0.23 | 0.8208 |
| visc | 313195 | -1.1975 | 3.4273 | 233 | -0.35 | 0.7271 |
| Intercept | 313307 | -16.9423 | 8.0713 | 233 | -2.10 | 0.0369 |
| visc | 313307 | 0.1928 | 3.4667 | 233 | 0.06 | 0.9557 |
| Intercept | 313893 | 8.2232 | 8.0725 | 233 | 1.02 | 0.3094 |
| visc | 313893 | 3.7648 | 3.4790 | 233 | 1.08 | 0.2803 |
| Intercept | 316110 | 7.2520 | 8.1923 | 233 | 0.89 | 0.3769 |
| visc | 316110 | 4.1490 | 3.9468 | 233 | 1.05 | 0.2942 |
| Intercept | 318562 | 16.0459 | 8.0678 | 233 | 1.99 | 0.0479 |
| visc | 318562 | -2.6328 | 3.5073 | 233 | -0.75 | 0.4536 |
| Intercept | 320182 | 4.3478 | 8.1155 | 233 | 0.54 | 0.5926 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|----|---------|------|---|
| visc | 320182 | -2.8654 | 3.4397 | 233| -0.83 | 0.4057|
| Intercept | 320957 | 18.5730 | 8.0585 | 233| 2.30 | 0.0221|
| visc | 320957 | 3.3264 | 3.4700 | 233| 0.96 | 0.3387|
| Intercept | 321611 | 0 | 19.1291 | 233| 0.00 | 1.0000|
| visc | 321611 | 0 | 4.4286 | 233| 0.00 | 1.0000|
| Intercept | 323837 | 28.4015 | 8.1533 | 233| 3.48 | 0.0006|
| visc | 323837 | 4.1128 | 3.4288 | 233| 1.20 | 0.2316|
| Intercept | 325290 | -11.3558 | 8.0497 | 233| -1.41 | 0.1597|
| visc | 325290 | 1.3248 | 3.4709 | 233| 0.38 | 0.7030|
| Intercept | 327055 | 1.8930 | 8.0350 | 233| 0.24 | 0.8140|
| visc | 327055 | 4.9370 | 3.5001 | 233| 1.41 | 0.1597|
| Intercept | 327325 | 11.8450 | 8.1134 | 233| 1.46 | 0.1457|
| visc | 327325 | 5.4414 | 3.4610 | 233| 1.57 | 0.1173|
| Intercept | 327933 | -15.7985 | 8.0634 | 233| -1.96 | 0.0513|
| visc | 327933 | 2.1601 | 3.4703 | 233| 0.62 | 0.5343|
| Intercept | 331318 | 2.7174 | 8.0876 | 233| 0.34 | 0.7372|
| visc | 331318 | 1.5695 | 3.4677 | 233| 0.45 | 0.6513|
| Intercept | 333524 | -19.7928 | 8.0696 | 233| -2.45 | 0.0149|
| visc | 333524 | -2.8167 | 3.4675 | 233| -0.81 | 0.4174|
| Intercept | 334672 | -9.3318 | 8.1449 | 233| -1.15 | 0.2531|
| visc | 334672 | -0.2781 | 3.3323 | 233| -0.08 | 0.9336|
| Intercept | 336167 | 14.8738 | 7.9113 | 233| 1.88 | 0.0613|
| visc | 336167 | 1.5025 | 3.6127 | 233| 0.42 | 0.6779|
| Intercept | 336843 | -5.0848 | 8.0713 | 233| -0.63 | 0.5293|
| visc | 336843 | 2.1019 | 3.4667 | 233| 0.61 | 0.5449|
| Intercept | 337315 | 25.8868 | 8.0583 | 233| 3.21 | 0.0015|
| visc | 337315 | 0.8288 | 3.4775 | 233| 0.24 | 0.8118|
| Intercept | 342131 | 25.3350 | 8.0740 | 233| 3.14 | 0.0019|
| visc | 342131 | -3.8521 | 3.4396 | 233| -1.12 | 0.2639|
| Intercept | 343097 | -31.4949 | 8.0884 | 233| -3.89 | 0.0001|
| visc | 343097 | -3.3096 | 3.4580 | 233| -0.96 | 0.3395|
| Intercept | 343233 | 15.6678 | 8.0496 | 233| 1.95 | 0.0528|
| visc | 343233 | 2.3635 | 3.5038 | 233| 0.67 | 0.5006|
| Intercept | 354494 | -4.5916 | 8.9587 | 233| -0.51 | 0.6088|
| visc | 354494 | 0.1748 | 3.4779 | 233| 0.05 | 0.9600|
The Mixed Procedure

Solution for Random Procedure Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|-----|---------|------|---|
| Intercept | 358230 | -14.4145 | 8.0950 | 233 | -1.78 | 0.0763 |
| visc | 358230 | -0.03356 | 3.4757 | 233 | -0.01 | 0.9923 |
| Intercept | 359308 | -5.0957 | 8.1997 | 233 | -0.62 | 0.5349 |
| visc | 359308 | -1.6555 | 3.9395 | 233 | -0.42 | 0.6747 |
| Intercept | 364664 | -13.4061 | 8.0684 | 233 | -1.66 | 0.0979 |
| visc | 364664 | -1.6177 | 3.4582 | 233 | -0.47 | 0.6404 |
| Intercept | 367836 | -34.1645 | 8.0160 | 233 | -4.26 | <.0001 |
| visc | 367836 | -2.7668 | 3.4778 | 233 | -0.80 | 0.4271 |
| Intercept | 368973 | 2.2896 | 8.1935 | 233 | 0.28 | 0.7802 |
| visc | 368973 | 1.6484 | 3.9467 | 233 | 0.42 | 0.6766 |
| Intercept | 369941 | 12.6535 | 8.4890 | 233 | 1.49 | 0.1374 |
| visc | 369941 | 1.3538 | 3.5256 | 233 | 0.38 | 0.7013 |
| Intercept | 370942 | 9.8806 | 8.1686 | 233 | 1.21 | 0.2277 |
| visc | 370942 | 2.4606 | 3.9652 | 233 | 0.62 | 0.5355 |
| Intercept | 371021 | 10.8710 | 8.0735 | 233 | 1.35 | 0.1794 |
| visc | 371021 | 0.2867 | 3.4648 | 233 | 0.08 | 0.9341 |
| Intercept | 374068 | 24.1489 | 8.0950 | 233 | 2.47 | 0.0144 |
| visc | 374068 | 0.4478 | 3.4446 | 233 | 0.13 | 0.8967 |
| Intercept | 374687 | 7.3244 | 8.0545 | 233 | 0.91 | 0.3641 |
| visc | 374687 | -1.4046 | 3.4945 | 233 | -0.40 | 0.6881 |
| Intercept | 376004 | -23.1848 | 8.0579 | 233 | -2.88 | 0.0044 |
| visc | 376004 | -1.9599 | 3.4785 | 233 | -0.56 | 0.5737 |
| Intercept | 376252 | -2.1936 | 8.0439 | 233 | -0.27 | 0.7853 |
| visc | 376252 | 2.9699 | 3.5057 | 233 | 0.85 | 0.3978 |
| Intercept | 380166 | 6.6885 | 8.0181 | 233 | 0.83 | 0.4050 |
| visc | 380166 | 2.1226 | 3.4966 | 233 | 0.61 | 0.5444 |
| Intercept | 380998 | -10.1333 | 8.0698 | 233 | -1.26 | 0.2105 |
| visc | 380998 | -4.8899 | 3.4617 | 233 | -1.41 | 0.1591 |
| Intercept | 383193 | -3.1909 | 8.0574 | 233 | -0.40 | 0.6925 |
| visc | 383193 | 0.6861 | 3.4608 | 233 | 0.20 | 0.8430 |
| Intercept | 383744 | -20.0394 | 8.1369 | 233 | -2.46 | 0.0145 |
| visc | 383744 | 1.0100 | 3.4234 | 233 | 0.30 | 0.7682 |
| Intercept | 385151 | 10.4512 | 8.1850 | 233 | 1.28 | 0.2029 |
| visc | 385151 | 2.1018 | 3.9476 | 233 | 0.53 | 0.5949 |
| Intercept | 386040 | -30.5801 | 8.1267 | 233 | -3.76 | 0.0002 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|---------|--------|
| visc | 386040 | -6.0407 | 3.3891 | 233| -1.78 | 0.0760 |
| Intercept | 386488 | -8.7943 | 8.0799 | 233| -1.09 | 0.2775 |
| visc | 386488 | -3.9075 | 3.4779 | 233| -1.12 | 0.2624 |
| Intercept | 386758 | 9.8192 | 8.1056 | 233| 1.21 | 0.2270 |
| visc | 386758 | -0.7116 | 3.4273 | 233| -0.21 | 0.8357 |
| Intercept | 387568 | -12.2296 | 8.0984 | 233| -1.51 | 0.1324 |
| visc | 387658 | 4.0702 | 3.4421 | 233| 1.18 | 0.2382 |
| Intercept | 392316 | -11.3545 | 8.0796 | 233| -1.41 | 0.1613 |
| visc | 392316 | 1.4799 | 3.4498 | 233| 0.43 | 0.6683 |
| Intercept | 393936 | -18.6853 | 8.0766 | 233| -2.31 | 0.0216 |
| visc | 393936 | 0.3369 | 3.4643 | 233| 0.10 | 0.9226 |
| Intercept | 394588 | -40.3634 | 8.1444 | 233| -4.96 | <.0001 |
| visc | 394588 | -2.1937 | 3.9667 | 233| -0.55 | 0.5808 |
| Intercept | 397661 | -34.9027 | 8.0717 | 233| -4.32 | <.0001 |
| visc | 397661 | -1.2971 | 3.4656 | 233| -0.37 | 0.7085 |
| Intercept | 397931 | -20.4450 | 9.7041 | 233| -2.11 | 0.0362 |
| visc | 397931 | -1.2698 | 3.5407 | 233| -0.36 | 0.7202 |

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>1</td>
<td>127</td>
<td>1.62</td>
<td>0.2061</td>
</tr>
</tbody>
</table>
The MEANS Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>N</th>
<th>Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdkid</td>
<td>Participant/ID Number</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>slope</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SlpSE</td>
<td>Std Err Pred</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pccn</td>
<td>PCC/Number</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dvdate</td>
<td>Visit/Date/#3 (1)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>vis</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>urine24_c</td>
<td>24hr Urine (dL/24hr)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>surice_ca</td>
<td>Serum:Uric Acid (mg/dL) (c)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>Serum:HDL (mg/dL) (c)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>albe_ca</td>
<td>Urine:Albumin Excr (mg/24hr) (c)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ecitcre_ca</td>
<td>Urine:Citrate Excr (mg/24h) (c)</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>esode_cc</td>
<td>Urine:Sodium Excr (mEq/24h) (c)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>xbvdate</td>
<td>Visit/Date</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cic</td>
<td>Correct Iothalamate Clear # 10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>bsa_c</td>
<td>BSA (c)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>hdyn</td>
<td>Hypertension yes/no # 12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmi_c</td>
<td>BMI (c)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>age</td>
<td>Age of participant</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>MDRD GFR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mrskvs</td>
<td>MR K Vol/Sum Ster</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mrrcvs</td>
<td>MR C Vol/Sum Reg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>visc</td>
<td>Relative Visit</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mrctps</td>
<td>Percent MR Cyst Vol</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lmrskvs</td>
<td>Log10 MR K Vol/Sum Ster</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lmrrevs</td>
<td>Log10 MR C Vol/Sum Reg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>Log10 Urine:Albumin Excr (mg/24hr) (c)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>lecitcre_ca</td>
<td>Log10 Urine:Citrate Excr (mg/24h) (c)</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>lMDRD_GFR</td>
<td>Log10 MDRD GFR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lrbf</td>
<td>Log10 Renal Blood Flow Corrected for BSA</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>lrvr</td>
<td>Log10 RVR corrected for BSA</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>lrpf</td>
<td>Log10 Remal Plasma Flow</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>lff</td>
<td>Log10 Filtration Fraction</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>race</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sex</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ind1_cic</td>
<td>CIC < or >= 100?</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ind2_cic</td>
<td>CIC < or >= 85?</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>genetyp</td>
<td>Gene Type</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Avgsystol</td>
<td>Average Systolic BP over years</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Avgdiastol</td>
<td>Average Diastolic BP over years</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The GLM Procedure

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>2</td>
<td>Female Male</td>
</tr>
<tr>
<td>hdyn</td>
<td>2</td>
<td>N Y</td>
</tr>
</tbody>
</table>

Number of observations 131

NOTE: Due to missing values, only 107 observations can be used in this analysis.
The GLM Procedure

Dependent Variable: slope

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12</td>
<td>273.3261445</td>
<td>22.7771787</td>
<td>3.92</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>94</td>
<td>545.5886478</td>
<td>5.8041346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>106</td>
<td>818.9147923</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coeff Var</th>
<th>Root MSE</th>
<th>slope Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.333766</td>
<td>-2822.794</td>
<td>2.409177</td>
<td>-0.085347</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>0.00661416</td>
<td>0.00661416</td>
<td>0.00</td>
<td>0.9731</td>
</tr>
<tr>
<td>hdyn</td>
<td>1</td>
<td>0.65311721</td>
<td>0.65311721</td>
<td>0.11</td>
<td>0.7380</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>3.11806572</td>
<td>3.11806572</td>
<td>0.54</td>
<td>0.4654</td>
</tr>
<tr>
<td>lrbf</td>
<td>1</td>
<td>10.38781976</td>
<td>10.38781976</td>
<td>1.79</td>
<td>0.1842</td>
</tr>
<tr>
<td>bmi_c</td>
<td>1</td>
<td>2.86656193</td>
<td>2.86656193</td>
<td>0.49</td>
<td>0.4839</td>
</tr>
<tr>
<td>mrcpts</td>
<td>1</td>
<td>95.93861597</td>
<td>95.93861597</td>
<td>16.53</td>
<td><.0001</td>
</tr>
<tr>
<td>urine24_c</td>
<td>1</td>
<td>0.04307076</td>
<td>0.04307076</td>
<td>0.01</td>
<td>0.9315</td>
</tr>
<tr>
<td>esode_cc</td>
<td>1</td>
<td>2.65444364</td>
<td>2.65444364</td>
<td>0.46</td>
<td>0.5005</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>1</td>
<td>0.70295463</td>
<td>0.70295463</td>
<td>0.12</td>
<td>0.7286</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>1</td>
<td>12.94307111</td>
<td>12.94307111</td>
<td>2.23</td>
<td>0.1387</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>1</td>
<td>0.02448201</td>
<td>0.02448201</td>
<td>0.00</td>
<td>0.9484</td>
</tr>
<tr>
<td>surice_ca</td>
<td>1</td>
<td>0.00100896</td>
<td>0.00100896</td>
<td>0.00</td>
<td>0.9895</td>
</tr>
</tbody>
</table>

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-----------|----------|----------------|---------|------|---|
| Intercept | -5.576505785 | B | 9.02452446 | -0.62 | 0.5381 |
| sex Female | 0.026285508 | B | 0.77865958 | 0.03 | 0.9731 |
| sex Male | 0.000000000 | B | . | . | . |
| hdyn N | -0.203721748 | B | 0.60731018 | -0.34 | 0.7380 |
| hdyn Y | 0.000000000 | B | . | . | . |
| age | 0.025201295 | B | 0.03438341 | 0.73 | 0.4654 |
| lrbf | 3.276386588 | B | 2.44907267 | 1.34 | 0.1842 |
| bmi_c | -0.040023241 | B | 0.05695086 | -0.70 | 0.4839 |
| mrcpts | -0.079328547 | B | 0.01951199 | -4.07 | <.0001 |
| urine24_c | -0.000022540 | B | 0.00391339 | 0.09 | 0.9315 |
| esode_cc | 0.002646497 | B | 0.00391339 | 0.68 | 0.5005 |
| lalbe_ca | 0.225293718 | B | 0.64737239 | 0.35 | 0.7286 |
The GLM Procedure

Dependent Variable: slope

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-----------|------------|----------------|---------|------|---|
| lpldle_ca | -0.011248949 | 0.00753290 | -1.49 | 0.1387 |
| lphdle_ca | 0.001703319 | 0.02622655 | 0.06 | 0.9484 |
| surice_ca | -0.004185311 | 0.31743775 | -0.01 | 0.9895 |

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.71196294</td>
<td>1.34089671</td>
<td>6.37106623</td>
</tr>
<tr>
<td>2</td>
<td>-3.74816630</td>
<td>-2.93062358</td>
<td>-0.81754272</td>
</tr>
<tr>
<td>3</td>
<td>-2.38209517</td>
<td>0.20915854</td>
<td>-2.59125370</td>
</tr>
<tr>
<td>4</td>
<td>-0.70665248</td>
<td>-1.91934232</td>
<td>1.21268984</td>
</tr>
<tr>
<td>5</td>
<td>0.18191143</td>
<td>-2.02448286</td>
<td>2.20639430</td>
</tr>
<tr>
<td>6</td>
<td>0.41679433</td>
<td>-0.80926689</td>
<td>1.22606122</td>
</tr>
<tr>
<td>7</td>
<td>1.55329636</td>
<td>-0.78625071</td>
<td>2.33954707</td>
</tr>
<tr>
<td>8</td>
<td>2.64771317</td>
<td>1.43114720</td>
<td>1.21656597</td>
</tr>
<tr>
<td>9</td>
<td>8.00636753</td>
<td>0.17043405</td>
<td>7.83593348</td>
</tr>
<tr>
<td>10</td>
<td>0.16298043</td>
<td>-0.18211748</td>
<td>0.34509790</td>
</tr>
<tr>
<td>11</td>
<td>2.11656744</td>
<td>1.50993910</td>
<td>0.60662834</td>
</tr>
<tr>
<td>12</td>
<td>-1.87055213</td>
<td>1.02540621</td>
<td>-2.89595835</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-4.88052287</td>
<td>-2.30802857</td>
<td>-2.57249430</td>
</tr>
<tr>
<td>15</td>
<td>-4.18054555</td>
<td>-1.82456431</td>
<td>-2.35598125</td>
</tr>
<tr>
<td>16</td>
<td>-3.66708516</td>
<td>-0.52845227</td>
<td>-3.13863290</td>
</tr>
<tr>
<td>17</td>
<td>-2.57118721</td>
<td>-0.40757727</td>
<td>-2.16360993</td>
</tr>
<tr>
<td>18</td>
<td>1.73651350</td>
<td>2.64145456</td>
<td>-0.90494106</td>
</tr>
<tr>
<td>19</td>
<td>3.12000385</td>
<td>0.22573385</td>
<td>2.89427000</td>
</tr>
<tr>
<td>20</td>
<td>0.14311399</td>
<td>0.04234413</td>
<td>0.10076985</td>
</tr>
<tr>
<td>21</td>
<td>-3.96335457</td>
<td>-0.08767185</td>
<td>-3.87568271</td>
</tr>
<tr>
<td>22</td>
<td>-1.58246263</td>
<td>-0.82642984</td>
<td>-0.75603279</td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-1.49988656</td>
<td>-0.58883922</td>
<td>-0.91104735</td>
</tr>
<tr>
<td>25</td>
<td>0.18036035</td>
<td>-1.14550000</td>
<td>1.32586035</td>
</tr>
<tr>
<td>26</td>
<td>2.30563127</td>
<td>2.68181235</td>
<td>-0.37618108</td>
</tr>
<tr>
<td>27</td>
<td>0.54753796</td>
<td>0.43852373</td>
<td>0.11368560</td>
</tr>
<tr>
<td>28</td>
<td>-2.07726250</td>
<td>-1.72790647</td>
<td>-0.34935603</td>
</tr>
<tr>
<td>29</td>
<td>1.28501930</td>
<td>-0.89435142</td>
<td>2.17937071</td>
</tr>
<tr>
<td>30</td>
<td>-1.66875065</td>
<td>-1.75910314</td>
<td>0.09035249</td>
</tr>
<tr>
<td>31</td>
<td>0.59141085</td>
<td>2.34768404</td>
<td>-1.75627319</td>
</tr>
<tr>
<td>32</td>
<td>0.80463450</td>
<td>1.42776125</td>
<td>-0.62312675</td>
</tr>
<tr>
<td>33</td>
<td>2.13782613</td>
<td>2.76106609</td>
<td>-0.62323996</td>
</tr>
<tr>
<td>34</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-0.64560326</td>
<td>-0.10090902</td>
<td>-0.54469424</td>
</tr>
<tr>
<td>36</td>
<td>2.49640474</td>
<td>2.18648881</td>
<td>0.30991592</td>
</tr>
<tr>
<td>37</td>
<td>9.05872977</td>
<td>3.07854208</td>
<td>5.98018769</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>1.26367461</td>
<td>1.93768590</td>
<td>-0.67401130</td>
</tr>
<tr>
<td>39</td>
<td>-1.09850190</td>
<td>2.99448847</td>
<td>-4.09299037</td>
</tr>
<tr>
<td>40</td>
<td>0.69436877</td>
<td>0.88579290</td>
<td>-0.19142413</td>
</tr>
<tr>
<td>41</td>
<td>-1.03447763</td>
<td>-0.60490991</td>
<td>-0.42956773</td>
</tr>
<tr>
<td>42</td>
<td>2.19233910</td>
<td>0.35921863</td>
<td>1.83312046</td>
</tr>
<tr>
<td>43</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.00000000</td>
<td>-1.56188736</td>
<td>1.56188736</td>
</tr>
<tr>
<td>45</td>
<td>0.00000000</td>
<td>0.45340624</td>
<td>-0.45340624</td>
</tr>
<tr>
<td>46</td>
<td>1.37689947</td>
<td>2.04726858</td>
<td>-0.67036911</td>
</tr>
<tr>
<td>47</td>
<td>-0.09530910</td>
<td>0.96716530</td>
<td>-1.06247440</td>
</tr>
<tr>
<td>48</td>
<td>0.67942915</td>
<td>-0.21190916</td>
<td>0.89133831</td>
</tr>
<tr>
<td>49</td>
<td>2.67731929</td>
<td>3.72602703</td>
<td>-1.04870774</td>
</tr>
<tr>
<td>50</td>
<td>-4.02856756</td>
<td>-2.15778208</td>
<td>-1.87078547</td>
</tr>
<tr>
<td>51</td>
<td>-0.76830456</td>
<td>1.59900482</td>
<td>-2.36730939</td>
</tr>
<tr>
<td>52</td>
<td>-2.41112864</td>
<td>1.95989620</td>
<td>-4.37102484</td>
</tr>
<tr>
<td>53</td>
<td>-0.47961709</td>
<td>-1.63754076</td>
<td>1.15792367</td>
</tr>
<tr>
<td>54</td>
<td>0.14008145</td>
<td>0.19362047</td>
<td>-0.05353902</td>
</tr>
<tr>
<td>55</td>
<td>0.00039054</td>
<td>0.18372782</td>
<td>-0.18333728</td>
</tr>
<tr>
<td>56</td>
<td>-2.59288970</td>
<td>-2.21613750</td>
<td>-0.37675220</td>
</tr>
<tr>
<td>57</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>-0.62082193</td>
<td>-0.01889261</td>
<td>-0.60192932</td>
</tr>
<tr>
<td>59</td>
<td>-1.03600217</td>
<td>-1.38358154</td>
<td>0.34757937</td>
</tr>
<tr>
<td>60</td>
<td>-0.29243448</td>
<td>0.05721988</td>
<td>-0.34965436</td>
</tr>
<tr>
<td>61</td>
<td>-1.66589882</td>
<td>-1.95447788</td>
<td>0.28857906</td>
</tr>
<tr>
<td>62</td>
<td>-2.10848305</td>
<td>-2.12261485</td>
<td>0.01413180</td>
</tr>
<tr>
<td>63</td>
<td>1.34855322</td>
<td>0.14394356</td>
<td>1.20460966</td>
</tr>
<tr>
<td>64</td>
<td>2.41727841</td>
<td>0.94945143</td>
<td>1.46782698</td>
</tr>
<tr>
<td>65</td>
<td>-1.88842724</td>
<td>-1.15210381</td>
<td>-0.73632343</td>
</tr>
<tr>
<td>66</td>
<td>-3.73925416</td>
<td>-2.94841617</td>
<td>-0.79083799</td>
</tr>
<tr>
<td>67</td>
<td>-6.84313800</td>
<td>-3.60436762</td>
<td>-3.23877038</td>
</tr>
<tr>
<td>68</td>
<td>0.42490097</td>
<td>-1.94208085</td>
<td>2.36698182</td>
</tr>
<tr>
<td>69</td>
<td>-2.23433485</td>
<td>-0.43804863</td>
<td>-1.79628622</td>
</tr>
<tr>
<td>70</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>-1.24934158</td>
<td>-0.05557593</td>
<td>-1.19376565</td>
</tr>
<tr>
<td>72</td>
<td>-6.07681033</td>
<td>-2.24517061</td>
<td>-3.83163971</td>
</tr>
<tr>
<td>73</td>
<td>-3.82037618</td>
<td>0.67663989</td>
<td>-4.49701607</td>
</tr>
<tr>
<td>74</td>
<td>1.54451986</td>
<td>1.62730494</td>
<td>-0.08278509</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.22051009</td>
<td>-0.22744256</td>
<td>0.44795264</td>
</tr>
<tr>
<td>76 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>0.62958507</td>
<td>-2.38064169</td>
<td>3.01022676</td>
</tr>
<tr>
<td>78</td>
<td>-2.91403302</td>
<td>0.25190714</td>
<td>-3.16594017</td>
</tr>
<tr>
<td>79</td>
<td>2.86878824</td>
<td>2.04946156</td>
<td>0.81932668</td>
</tr>
<tr>
<td>80</td>
<td>-2.87957220</td>
<td>-1.50641166</td>
<td>-1.37316054</td>
</tr>
<tr>
<td>81 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>-1.19752906</td>
<td>-0.66802636</td>
<td>-0.52950270</td>
</tr>
<tr>
<td>84</td>
<td>0.19281413</td>
<td>0.61367225</td>
<td>-0.42085812</td>
</tr>
<tr>
<td>85</td>
<td>3.76480771</td>
<td>1.92872400</td>
<td>1.83608371</td>
</tr>
<tr>
<td>86</td>
<td>4.14898819</td>
<td>0.74197864</td>
<td>3.40700955</td>
</tr>
<tr>
<td>87 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>-2.86538177</td>
<td>-0.48084772</td>
<td>-2.38453405</td>
</tr>
<tr>
<td>89</td>
<td>3.32643573</td>
<td>1.48126282</td>
<td>1.84517291</td>
</tr>
<tr>
<td>90</td>
<td>0.00000000</td>
<td>-2.58242770</td>
<td>2.58242770</td>
</tr>
<tr>
<td>91 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>1.32477775</td>
<td>-1.83703182</td>
<td>3.16180957</td>
</tr>
<tr>
<td>93</td>
<td>4.93701391</td>
<td>0.81749284</td>
<td>4.11952107</td>
</tr>
<tr>
<td>94 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>2.16007024</td>
<td>0.92782208</td>
<td>1.23224816</td>
</tr>
<tr>
<td>96</td>
<td>1.56948218</td>
<td>2.30250388</td>
<td>-0.73302170</td>
</tr>
<tr>
<td>97</td>
<td>-2.81671718</td>
<td>-2.73870545</td>
<td>-0.07801173</td>
</tr>
<tr>
<td>98</td>
<td>-0.27812012</td>
<td>-1.14146169</td>
<td>0.86344157</td>
</tr>
<tr>
<td>99</td>
<td>1.50245616</td>
<td>0.03147078</td>
<td>1.47098538</td>
</tr>
<tr>
<td>100</td>
<td>2.10190188</td>
<td>1.02075896</td>
<td>1.08114292</td>
</tr>
<tr>
<td>101</td>
<td>0.82881714</td>
<td>1.96613950</td>
<td>-1.13732236</td>
</tr>
<tr>
<td>102</td>
<td>-3.85208039</td>
<td>0.19751004</td>
<td>-4.04959043</td>
</tr>
<tr>
<td>103 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>2.36353796</td>
<td>0.53410354</td>
<td>1.82943442</td>
</tr>
<tr>
<td>105</td>
<td>0.17476666</td>
<td>-0.06490969</td>
<td>0.23967635</td>
</tr>
<tr>
<td>106</td>
<td>-0.03355874</td>
<td>-0.47361545</td>
<td>0.44005671</td>
</tr>
<tr>
<td>107 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>-1.61773122</td>
<td>1.32615155</td>
<td>-2.94388277</td>
</tr>
<tr>
<td>109 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 *</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>112 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.28665804</td>
<td>1.67313310</td>
<td>-1.38647506</td>
</tr>
<tr>
<td>114</td>
<td>0.44781852</td>
<td>1.40093899</td>
<td>-0.95312046</td>
</tr>
<tr>
<td>115 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>2.96987986</td>
<td>0.54833336</td>
<td>2.42154650</td>
</tr>
<tr>
<td>118</td>
<td>2.12255584</td>
<td>1.22409184</td>
<td>0.89846401</td>
</tr>
<tr>
<td>119</td>
<td>-4.88986382</td>
<td>-0.43594569</td>
<td>-4.45391813</td>
</tr>
<tr>
<td>120</td>
<td>0.68610241</td>
<td>-0.22761934</td>
<td>0.91372175</td>
</tr>
<tr>
<td>121</td>
<td>1.01003721</td>
<td>-2.00088491</td>
<td>3.01092212</td>
</tr>
<tr>
<td>122 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>-6.04069374</td>
<td>-2.63276063</td>
<td>-3.40793311</td>
</tr>
<tr>
<td>124</td>
<td>-3.90746752</td>
<td>-2.44418277</td>
<td>-1.46328475</td>
</tr>
<tr>
<td>125 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>4.07017840</td>
<td>-0.50834357</td>
<td>4.57852197</td>
</tr>
<tr>
<td>127</td>
<td>1.47987122</td>
<td>-0.83257659</td>
<td>2.31244781</td>
</tr>
<tr>
<td>128 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>-2.19371375</td>
<td>-2.47877117</td>
<td>0.28505742</td>
</tr>
<tr>
<td>130 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>-1.26983553</td>
<td>-1.67567424</td>
<td>0.40583870</td>
</tr>
</tbody>
</table>

* * Observation was not used in this analysis *

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Residuals</td>
<td>-0.0000000</td>
</tr>
<tr>
<td>Sum of Squared Residuals</td>
<td>545.5886478</td>
</tr>
<tr>
<td>Sum of Squared Residuals - Error SS</td>
<td>-0.0000000</td>
</tr>
<tr>
<td>First Order Autocorrelation</td>
<td>0.1547811</td>
</tr>
<tr>
<td>Durbin-Watson D</td>
<td>1.6157383</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>MDRD_gfr</td>
</tr>
<tr>
<td>Covariance Structure</td>
<td>Variance Components</td>
</tr>
<tr>
<td>Subject Effect</td>
<td>pkdid</td>
</tr>
<tr>
<td>Estimation Method</td>
<td>ML</td>
</tr>
<tr>
<td>Residual Variance Method</td>
<td>Profile</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
<td>Model-Based</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
<td>Containment</td>
</tr>
</tbody>
</table>

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>131</td>
<td>200922 201800 201877 203328 204555 205758 206816 208820 208324 209281 213454 214376 215052 216086 220068 223343 223534 223635 224502 226640 232174 234053 234650 234795 235752 236202 237192 239960 241501 242715 243560 243738 244111 244831 245990 246620 247880 248712 252086 255765 256171 259940 263617 264225 264348 265171 268455 271043 271460 271662 271684 273214 273225 277490 281000 281977 283722 283935 285601 286095 290336 292362 293317 293598 294105 294511 295106 295940 298515 299663 300641 300696 300911 301157 301372 303868 304860 306546 312317 313195 313307 313893 316110 318562 320182 320957 321611 323837 325290 327055 327325 327933 331318 333524 334672 336167 336843 337315 341213 343097 343233 354494 358230 359308 364664 367836 368973 369941 370942 371021 374068 374687 376004 376252 380166 380998 383193 383744 385151 386040 386488 386758 387658 392316 393936 394588 397661 399731</td>
</tr>
</tbody>
</table>

Dimensions

Covariance Parameters	3
Columns in X	2
Columns in Z Per Subject	2
Subjects	131
Max Obs Per Subject	4
Observations Used	495
Observations Not Used	29
Total Observations	524

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>4588.98509956</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4118.65229754</td>
<td>0.00001792</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4118.62261897</td>
<td>0.00000005</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4118.62254547</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>pkdid</td>
<td>508.25</td>
</tr>
<tr>
<td>visc</td>
<td>pkdid</td>
<td>2.6471</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>107.48</td>
</tr>
</tbody>
</table>

Fit Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
<td>4118.6</td>
</tr>
<tr>
<td>AIC (smaller is better)</td>
<td>4128.6</td>
</tr>
<tr>
<td>AICC (smaller is better)</td>
<td>4128.7</td>
</tr>
<tr>
<td>BIC (smaller is better)</td>
<td>4143.0</td>
</tr>
</tbody>
</table>

Solution for Fixed Effects

| Effect | Estimate | Standard Error | DF | t Value | Pr > |t| |
|--------|----------|----------------|----|---------|------|---|
| Intercept | 86.9557 | 2.1135 | 130| 41.14 | <.0001|
| visc | -1.7914 | 0.4364 | 128| -4.11 | <.0001|
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|-----------------------|----------|---------|---------|---------|-------|--------|
| Intercept | 200922 | -6.0475 | 5.7868 | 235 | -1.05 | 0.2971 |
| \(v \text{isc} \) | 200922 | -0.1094 | 1.5317 | 235 | -0.07 | 0.9431 |
| Intercept | 201800 | -4.9679 | 5.8476 | 235 | -0.85 | 0.3964 |
| \(v \text{isc} \) | 201800 | 0.02658 | 1.5265 | 235 | 0.02 | 0.9861 |
| Intercept | 201877 | -6.7385 | 5.8311 | 235 | -1.16 | 0.2490 |
| \(v \text{isc} \) | 201877 | -0.3978 | 1.5270 | 235 | -0.26 | 0.7947 |
| Intercept | 203328 | -11.9428 | 5.8897 | 235 | -2.03 | 0.0437 |
| \(v \text{isc} \) | 203328 | 0.08468 | 1.5213 | 235 | 0.06 | 0.9557 |
| Intercept | 204555 | 2.8420 | 5.8353 | 235 | 0.49 | 0.6267 |
| \(v \text{isc} \) | 204555 | -0.05198 | 1.5246 | 235 | -0.03 | 0.9728 |
| Intercept | 205758 | -11.9026 | 5.8367 | 235 | -2.04 | 0.0425 |
| \(v \text{isc} \) | 205758 | -0.2255 | 1.5218 | 235 | -0.15 | 0.8823 |
| Intercept | 206816 | 0.7140 | 5.8266 | 235 | 0.12 | 0.9220 |
| \(v \text{isc} \) | 206816 | 0.1499 | 1.5296 | 235 | 0.10 | 0.9274 |
| Intercept | 208280 | 0.9011 | 5.8328 | 235 | 0.15 | 0.8774 |
| \(v \text{isc} \) | 208280 | 0.5644 | 1.5280 | 235 | 0.37 | 0.7122 |
| Intercept | 208324 | 41.4385 | 5.8367 | 235 | 7.11 | <.0001 |
| \(v \text{isc} \) | 208324 | 0.7140 | 5.8266 | 235 | 0.12 | 0.9026 |
| Intercept | 213454 | 14.3513 | 5.8599 | 235 | 2.45 | 0.0151 |
| \(v \text{isc} \) | 213454 | 0.5526 | 1.5192 | 235 | 0.36 | 0.7164 |
| Intercept | 214376 | 4.7091 | 5.8331 | 235 | 0.81 | 0.4203 |
| \(v \text{isc} \) | 214376 | -0.1402 | 1.5299 | 235 | -0.09 | 0.9271 |
| Intercept | 215052 | 12.6025 | 6.4387 | 235 | 1.96 | 0.0515 |
| \(v \text{isc} \) | 215052 | 0.1997 | 1.5132 | 235 | 0.13 | 0.8951 |
| Intercept | 216086 | 14.0923 | 5.8354 | 235 | -2.41 | 0.0165 |
| \(v \text{isc} \) | 216086 | -0.9344 | 1.5295 | 235 | -0.61 | 0.5418 |
| Intercept | 220068 | -32.6156 | 5.8473 | 235 | -5.58 | <.0001 |
| \(v \text{isc} \) | 220068 | -0.5759 | 1.5233 | 235 | -0.38 | 0.7057 |
| Intercept | 223343 | -1.2435 | 5.8413 | 235 | -0.21 | 0.8316 |
| \(v \text{isc} \) | 223343 | -0.2199 | 1.5220 | 235 | -0.14 | 0.8852 |
| Intercept | 223534 | 12.2549 | 6.2776 | 235 | 1.95 | 0.0521 |
| \(v \text{isc} \) | 223534 | 0.1047 | 1.5834 | 235 | 0.07 | 0.9473 |
| Intercept | 223635 | 73.3910 | 5.9185 | 235 | 12.40 | <.0001 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|-----|---------|------|---|
| visc | 223635 | 0.8189 | 1.4997 | 235 | 0.55 | 0.5856 |
| Intercept | 224502 | 8.1608 | 5.7875 | 235 | 1.41 | 0.1598 |
| visc | 224502 | -0.2182 | 1.5275 | 235 | -0.14 | 0.8865 |
| Intercept | 226640 | -3.3779 | 5.8320 | 235 | -0.58 | 0.5630 |
| visc | 226640 | 0.1239 | 1.5273 | 235 | 0.08 | 0.9354 |
| Intercept | 229428 | 12.3837 | 5.8251 | 235 | 2.13 | 0.0346 |
| visc | 229428 | -0.6848 | 1.5301 | 235 | -0.45 | 0.6549 |
| Intercept | 229733 | -17.0435 | 5.8442 | 235 | -2.92 | 0.0039 |
| visc | 229733 | -0.3965 | 1.5146 | 235 | -0.26 | 0.7937 |
| Intercept | 232174 | 14.3338 | 6.3128 | 235 | 2.27 | 0.0241 |
| visc | 232174 | 0.5059 | 1.5758 | 235 | 0.32 | 0.7484 |
| Intercept | 234053 | 13.7783 | 5.8212 | 235 | 2.37 | 0.0187 |
| visc | 234053 | 0.08323 | 1.5297 | 235 | 0.05 | 0.9567 |
| Intercept | 234650 | -7.6621 | 5.8086 | 235 | -1.32 | 0.1884 |
| visc | 234650 | 0.3768 | 1.5291 | 235 | 0.25 | 0.8056 |
| Intercept | 234795 | 30.9234 | 7.5025 | 235 | 4.12 | <.0001 |
| visc | 234795 | -0.3889 | 1.5368 | 235 | -0.25 | 0.8004 |
| Intercept | 235752 | 12.3648 | 5.8855 | 235 | 2.10 | 0.0367 |
| visc | 235752 | 0.05376 | 1.5342 | 235 | 0.04 | 0.9721 |
| Intercept | 236202 | -27.2088 | 5.8337 | 235 | -4.66 | <.0001 |
| visc | 236202 | -0.1421 | 1.5223 | 235 | -0.09 | 0.9257 |
| Intercept | 237192 | 4.2641 | 5.8435 | 235 | 0.73 | 0.4663 |
| visc | 237192 | 0.7701 | 1.5225 | 235 | 0.51 | 0.6135 |
| Intercept | 239960 | -12.1890 | 5.8656 | 235 | -2.08 | 0.0388 |
| visc | 239960 | -0.6469 | 1.5140 | 235 | -0.43 | 0.6696 |
| Intercept | 241501 | 1.7368 | 5.9359 | 235 | 0.29 | 0.7701 |
| visc | 241501 | 1.2469 | 1.4769 | 235 | 0.84 | 0.3994 |
| Intercept | 242715 | 13.8159 | 5.8600 | 235 | 2.36 | 0.0192 |
| visc | 242715 | -1.1631 | 1.5219 | 235 | -0.76 | 0.4455 |
| Intercept | 243560 | 11.1695 | 5.8399 | 235 | 1.91 | 0.0570 |
| visc | 243560 | -0.4435 | 1.5261 | 235 | -0.29 | 0.7716 |
| Intercept | 243738 | -12.9280 | 5.8223 | 235 | -2.22 | 0.0273 |
| visc | 243738 | -0.4577 | 1.5297 | 235 | -0.30 | 0.7650 |
| Intercept | 244111 | 33.5006 | 5.8800 | 235 | 5.70 | <.0001 |
| visc | 244111 | -0.2294 | 1.5081 | 235 | -0.15 | 0.8792 |
The Mixed Procedure

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|-----|---------|------|---|
| Intercept | 244831 | 61.4392 | 5.8568 | 235 | 10.49 | <.0001 |
| visc | 244831 | -1.5355 | 1.5301 | 235 | -1.00 | 0.3166 |
| Intercept | 245990 | 37.0284 | 5.8713 | 235 | 6.31 | <.0001 |
| visc | 245990 | 0.4352 | 1.5014 | 235 | 0.29 | 0.7722 |
| Intercept | 246620 | 17.9268 | 5.8718 | 235 | 3.05 | 0.0025 |
| visc | 246620 | 0.7847 | 1.5218 | 235 | 0.52 | 0.6066 |
| Intercept | 247880 | 18.0823 | 5.8799 | 235 | 3.08 | 0.0024 |
| visc | 247880 | -0.7522 | 1.5087 | 235 | -0.50 | 0.6185 |
| Intercept | 248712 | -15.6888 | 5.8778 | 235 | -2.67 | 0.0081 |
| visc | 248712 | 0.1024 | 1.5015 | 235 | 0.07 | 0.9464 |
| Intercept | 252086 | -22.3067 | 5.8636 | 235 | -3.80 | 0.0002 |
| visc | 252086 | 0.001035 | 1.5235 | 235 | 0.00 | 0.9995 |
| Intercept | 255765 | 5.1880 | 5.8314 | 235 | 0.89 | 0.3746 |
| visc | 255765 | 0.7947 | 1.5282 | 235 | 0.52 | 0.6035 |
| Intercept | 256171 | -8.0270 | 5.7758 | 235 | -1.39 | 0.1659 |
| visc | 256171 | -0.03103 | 1.5366 | 235 | -0.02 | 0.9839 |
| Intercept | 258950 | -15.3260 | 7.2558 | 235 | -2.11 | 0.0357 |
| visc | 258950 | -0.02323 | 1.6155 | 235 | -0.01 | 0.9885 |
| Intercept | 259940 | 22.8925 | 9.5792 | 235 | 2.39 | 0.0176 |
| visc | 259940 | 0 | 1.6270 | 235 | 0.00 | 1.0000 |
| Intercept | 263617 | -6.1235 | 5.8456 | 235 | -1.05 | 0.2959 |
| visc | 263617 | 0.09256 | 1.5264 | 235 | 0.06 | 0.9517 |
| Intercept | 264225 | 57.4979 | 5.8476 | 235 | 9.83 | <.0001 |
| visc | 264225 | 0.8412 | 1.5206 | 235 | 0.56 | 0.5768 |
| Intercept | 264348 | 88.0580 | 5.8203 | 235 | 15.13 | <.0001 |
| visc | 264348 | -2.8030 | 1.5286 | 235 | -1.83 | 0.0680 |
| Intercept | 265171 | 16.1658 | 5.8402 | 235 | 2.77 | 0.0061 |
| visc | 265171 | 0.08478 | 1.5260 | 235 | 0.06 | 0.9557 |
| Intercept | 268455 | -19.4019 | 5.8770 | 235 | -3.30 | 0.0011 |
| visc | 268455 | -0.3995 | 1.5222 | 235 | -0.26 | 0.7932 |
| Intercept | 271043 | 38.7552 | 5.8454 | 235 | 6.63 | <.0001 |
| visc | 271043 | 0.8412 | 1.5051 | 235 | 0.56 | 0.5768 |
| Intercept | 271460 | -1.3058 | 5.8261 | 235 | -0.22 | 0.8228 |
| visc | 271460 | -0.1628 | 1.5273 | 235 | -0.11 | 0.9152 |
| Intercept | 271662 | 0.5242 | 7.2505 | 235 | 0.07 | 0.9424 |
Solution for Random Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Participant/ID Number</th>
<th>Estimate</th>
<th>Std Err</th>
<th>Std Pred</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>271662</td>
<td>0.1484</td>
<td>1.6173</td>
<td>235</td>
<td></td>
<td>0.09</td>
<td>0.9270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>271684</td>
<td>49.0311</td>
<td>5.8670</td>
<td>235</td>
<td></td>
<td>8.36</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>271684</td>
<td>-0.5730</td>
<td>1.5202</td>
<td>235</td>
<td></td>
<td>-0.38</td>
<td>0.7066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>273214</td>
<td>5.3112</td>
<td>5.7733</td>
<td>235</td>
<td></td>
<td>0.92</td>
<td>0.3585</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>273214</td>
<td>0.1603</td>
<td>1.5371</td>
<td>235</td>
<td></td>
<td>0.10</td>
<td>0.9170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>273225</td>
<td>-10.4263</td>
<td>7.3637</td>
<td>235</td>
<td></td>
<td>-1.42</td>
<td>0.1581</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>273225</td>
<td>-0.2037</td>
<td>1.5809</td>
<td>235</td>
<td></td>
<td>-0.13</td>
<td>0.8976</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>277490</td>
<td>16.4729</td>
<td>5.8505</td>
<td>235</td>
<td></td>
<td>2.82</td>
<td>0.0053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>277490</td>
<td>-0.8982</td>
<td>1.5217</td>
<td>235</td>
<td></td>
<td>-0.59</td>
<td>0.5556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>281000</td>
<td>15.1206</td>
<td>5.8157</td>
<td>235</td>
<td></td>
<td>2.60</td>
<td>0.0099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>281000</td>
<td>0.05498</td>
<td>1.5290</td>
<td>235</td>
<td></td>
<td>0.04</td>
<td>0.9713</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>281977</td>
<td>0.1460</td>
<td>5.8417</td>
<td>235</td>
<td></td>
<td>0.03</td>
<td>0.9801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>281977</td>
<td>-0.8402</td>
<td>1.5254</td>
<td>235</td>
<td></td>
<td>-0.55</td>
<td>0.5823</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>283722</td>
<td>44.2205</td>
<td>5.8189</td>
<td>235</td>
<td></td>
<td>7.60</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>283722</td>
<td>-0.6934</td>
<td>1.5247</td>
<td>235</td>
<td></td>
<td>-0.45</td>
<td>0.6497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>283935</td>
<td>-17.1939</td>
<td>6.3025</td>
<td>235</td>
<td></td>
<td>-2.73</td>
<td>0.0069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>283935</td>
<td>-0.2957</td>
<td>1.5768</td>
<td>235</td>
<td></td>
<td>-0.19</td>
<td>0.8514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>285601</td>
<td>-3.7377</td>
<td>5.8486</td>
<td>235</td>
<td></td>
<td>-0.64</td>
<td>0.5234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>285601</td>
<td>-0.2614</td>
<td>1.5256</td>
<td>235</td>
<td></td>
<td>-0.17</td>
<td>0.8641</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>286095</td>
<td>7.5609</td>
<td>5.8342</td>
<td>235</td>
<td></td>
<td>1.30</td>
<td>0.1963</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>286095</td>
<td>0.000653</td>
<td>1.5259</td>
<td>235</td>
<td></td>
<td>0.00</td>
<td>0.9997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>290336</td>
<td>26.7934</td>
<td>5.8773</td>
<td>235</td>
<td></td>
<td>4.56</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>290336</td>
<td>1.0170</td>
<td>1.5214</td>
<td>235</td>
<td></td>
<td>0.67</td>
<td>0.5045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>292362</td>
<td>-16.4076</td>
<td>5.9085</td>
<td>235</td>
<td></td>
<td>-2.78</td>
<td>0.0059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>292362</td>
<td>-0.8873</td>
<td>1.5163</td>
<td>235</td>
<td></td>
<td>-0.59</td>
<td>0.5590</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>293317</td>
<td>-20.0057</td>
<td>5.8099</td>
<td>235</td>
<td></td>
<td>-3.44</td>
<td>0.0007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>293317</td>
<td>-0.2115</td>
<td>1.5206</td>
<td>235</td>
<td></td>
<td>-0.14</td>
<td>0.8895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>293598</td>
<td>-34.2377</td>
<td>6.2931</td>
<td>235</td>
<td></td>
<td>-5.44</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>293598</td>
<td>-0.6537</td>
<td>1.5819</td>
<td>235</td>
<td></td>
<td>-0.41</td>
<td>0.6798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>294105</td>
<td>-23.8736</td>
<td>6.4190</td>
<td>235</td>
<td></td>
<td>-3.72</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>294105</td>
<td>-0.3945</td>
<td>1.5294</td>
<td>235</td>
<td></td>
<td>-0.26</td>
<td>0.7967</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>294511</td>
<td>44.2341</td>
<td>5.8563</td>
<td>235</td>
<td></td>
<td>7.55</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>294511</td>
<td>0.1156</td>
<td>1.5234</td>
<td>235</td>
<td></td>
<td>0.08</td>
<td>0.9396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>295106</td>
<td>18.5181</td>
<td>5.8530</td>
<td>235</td>
<td></td>
<td>3.16</td>
<td>0.0018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>295106</td>
<td>0.06591</td>
<td>1.5164</td>
<td>235</td>
<td></td>
<td>0.04</td>
<td>0.9654</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|----|---------|-------|---|
| Intercept | 295940 | -10.3429 | 5.8202 | 235 | -1.78 | 0.0768 |
| Intercept | 295940 | -22.8923 | 5.8212 | 235 | -3.93 | 0.0001 |
| Intercept | 298515 | -0.7119 | 1.5230 | 235 | -0.47 | 0.6406 |
| Intercept | 298515 | -22.8923 | 5.8212 | 235 | -3.93 | 0.0001 |
| Intercept | 299663 | -22.8923 | 5.8212 | 235 | -3.93 | 0.0001 |
| Intercept | 300641 | -0.7119 | 1.5230 | 235 | -0.47 | 0.6406 |
| Intercept | 300641 | -22.8923 | 5.8212 | 235 | -3.93 | 0.0001 |
| Intercept | 300696 | -22.8923 | 5.8212 | 235 | -3.93 | 0.0001 |
| Intercept | 300911 | -22.8923 | 5.8212 | 235 | -3.93 | 0.0001 |
| Intercept | 301157 | -22.8923 | 5.8212 | 235 | -3.93 | 0.0001 |
| Intercept | 303868 | 15.9180 | 5.8474 | 235 | 2.72 | 0.0070 |
| Intercept | 304860 | -16.5444 | 5.8199 | 235 | -2.84 | 0.0049 |
| Intercept | 306546 | -18.0535 | 5.8462 | 235 | -3.09 | 0.0023 |
| Intercept | 312317 | 25.6267 | 5.8148 | 235 | 4.41 | <.0001 |
| Intercept | 313195 | 25.6267 | 5.8148 | 235 | 4.41 | <.0001 |
| Intercept | 313307 | 25.6267 | 5.8148 | 235 | 4.41 | <.0001 |
| Intercept | 313893 | -0.1882 | 1.5216 | 235 | -0.12 | 0.9017 |
| Intercept | 316110 | 0.1063 | 1.5274 | 235 | 0.07 | 0.9446 |
| Intercept | 316110 | 0.5196 | 1.5287 | 235 | 0.34 | 0.7342 |
| Intercept | 318562 | 1.3923 | 5.8283 | 235 | 0.24 | 0.8114 |
| Intercept | 318562 | -16.9908 | 5.8283 | 235 | -2.92 | 0.0039 |
| Intercept | 320182 | -7.0751 | 5.8471 | 235 | -1.21 | 0.2275 |
Solution for Random Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Participant/ID Number</th>
<th>Estimate</th>
<th>Std Err Pred</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>320182</td>
<td>-0.5517</td>
<td>1.5238</td>
<td>235</td>
<td>-0.36</td>
<td>0.7176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept</td>
<td>320957</td>
<td>10.7324</td>
<td>5.8242</td>
<td>235</td>
<td>1.84</td>
<td>0.0666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>320957</td>
<td>0.6814</td>
<td>1.5277</td>
<td>235</td>
<td>0.45</td>
<td>0.6560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept</td>
<td>321611</td>
<td>-28.6912</td>
<td>9.5792</td>
<td>235</td>
<td>-3.00</td>
<td>0.0030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>323837</td>
<td>0.6814</td>
<td>1.5277</td>
<td>235</td>
<td>0.45</td>
<td>0.6560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept</td>
<td>320957</td>
<td>10.7324</td>
<td>5.8242</td>
<td>235</td>
<td>1.84</td>
<td>0.0666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>320957</td>
<td>0.6814</td>
<td>1.5277</td>
<td>235</td>
<td>0.45</td>
<td>0.6560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept</td>
<td>321611</td>
<td>-28.6912</td>
<td>9.5792</td>
<td>235</td>
<td>-3.00</td>
<td>0.0030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>323837</td>
<td>0.6814</td>
<td>1.5277</td>
<td>235</td>
<td>0.45</td>
<td>0.6560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept</td>
<td>320957</td>
<td>10.7324</td>
<td>5.8242</td>
<td>235</td>
<td>1.84</td>
<td>0.0666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>320957</td>
<td>0.6814</td>
<td>1.5277</td>
<td>235</td>
<td>0.45</td>
<td>0.6560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept</td>
<td>321611</td>
<td>-28.6912</td>
<td>9.5792</td>
<td>235</td>
<td>-3.00</td>
<td>0.0030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>323837</td>
<td>0.6814</td>
<td>1.5277</td>
<td>235</td>
<td>0.45</td>
<td>0.6560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept</td>
<td>320957</td>
<td>10.7324</td>
<td>5.8242</td>
<td>235</td>
<td>1.84</td>
<td>0.0666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>320957</td>
<td>0.6814</td>
<td>1.5277</td>
<td>235</td>
<td>0.45</td>
<td>0.6560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept</td>
<td>321611</td>
<td>-28.6912</td>
<td>9.5792</td>
<td>235</td>
<td>-3.00</td>
<td>0.0030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>323837</td>
<td>0.6814</td>
<td>1.5277</td>
<td>235</td>
<td>0.45</td>
<td>0.6560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept</td>
<td>320957</td>
<td>10.7324</td>
<td>5.8242</td>
<td>235</td>
<td>1.84</td>
<td>0.0666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>320957</td>
<td>0.6814</td>
<td>1.5277</td>
<td>235</td>
<td>0.45</td>
<td>0.6560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept</td>
<td>321611</td>
<td>-28.6912</td>
<td>9.5792</td>
<td>235</td>
<td>-3.00</td>
<td>0.0030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>323837</td>
<td>0.6814</td>
<td>1.5277</td>
<td>235</td>
<td>0.45</td>
<td>0.6560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept</td>
<td>320957</td>
<td>10.7324</td>
<td>5.8242</td>
<td>235</td>
<td>1.84</td>
<td>0.0666</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|----|---------|------|----|
| Intercept | 358230 | -19.5687 | 5.8347 | 235 | -3.35 | 0.0009 |
| visc | 358230 | -0.2265 | 1.5288 | 235 | -0.15 | 0.8823 |
| Intercept | 359308 | 4.1433 | 5.8352 | 235 | 0.71 | 0.4784 |
| visc | 359308 | 0.1808 | 1.5264 | 235 | 0.12 | 0.9058 |
| Intercept | 364664 | -13.0826 | 5.8292 | 235 | -2.24 | 0.0257 |
| visc | 364664 | 0.1460 | 1.5261 | 235 | 0.10 | 0.9238 |
| Intercept | 367836 | -23.9513 | 5.8097 | 235 | -4.12 | <0.0001 |
| visc | 367836 | -0.7090 | 1.5286 | 235 | -0.46 | 0.6432 |
| Intercept | 369973 | 2.0594 | 6.2699 | 235 | 0.33 | 0.7429 |
| visc | 369973 | 0.06143 | 1.5841 | 235 | 0.04 | 0.9691 |
| Intercept | 370942 | -4.4796 | 5.8191 | 235 | -0.77 | 0.4422 |
| visc | 370942 | -0.2094 | 1.5312 | 235 | -0.14 | 0.8913 |
| Intercept | 371021 | 2.7687 | 6.4056 | 235 | 0.43 | 0.6660 |
| visc | 371021 | 0.1536 | 1.5214 | 235 | 0.10 | 0.9197 |
| Intercept | 374687 | -4.4796 | 5.8191 | 235 | -0.77 | 0.4422 |
| visc | 374687 | -0.2094 | 1.5312 | 235 | -0.14 | 0.8913 |
| Intercept | 376004 | -32.1270 | 5.8226 | 235 | -5.52 | <0.0001 |
| visc | 376004 | -0.2132 | 1.5290 | 235 | -0.14 | 0.8892 |
| Intercept | 376252 | -5.7751 | 5.8140 | 235 | -0.99 | 0.3216 |
| visc | 376252 | 0.1666 | 1.5327 | 235 | 0.11 | 0.9136 |
| Intercept | 380166 | 0.3440 | 5.8075 | 235 | 0.06 | 0.9528 |
| visc | 380166 | 0.03028 | 1.5313 | 235 | 0.02 | 0.9842 |
| Intercept | 380998 | -3.4476 | 5.8291 | 235 | -0.59 | 0.5548 |
| visc | 380998 | 0.01660 | 1.5266 | 235 | 0.01 | 0.9913 |
| Intercept | 383193 | -3.1516 | 5.8253 | 235 | -0.54 | 0.5890 |
| visc | 383193 | 0.5288 | 1.5264 | 235 | 0.35 | 0.7293 |
| Intercept | 383744 | -10.6776 | 5.8568 | 235 | -1.82 | 0.0696 |
| visc | 383744 | -0.04165 | 1.5215 | 235 | -0.03 | 0.9782 |
| Intercept | 385151 | 7.0469 | 6.2678 | 235 | 1.12 | 0.2620 |
| visc | 385151 | 0.09182 | 1.5842 | 235 | 0.06 | 0.9538 |
| Intercept | 386040 | -39.1883 | 5.8594 | 235 | -6.69 | <0.0001 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|-------|---------|
| visc | 386040 | -0.6816 | 1.5163 | 235 | -0.45 | 0.6535 |
| Intercept | 386488 | -15.7972 | 5.8296 | 235 | -2.71 | 0.0072 |
| visc | 386488 | 0.1853 | 1.5290 | 235 | 0.12 | 0.9036 |
| Intercept | 386758 | -5.6267 | 5.8461 | 235 | -0.96 | 0.3368 |
| visc | 386758 | 0.3320 | 1.5219 | 235 | 0.22 | 0.8275 |
| Intercept | 387658 | -7.2596 | 5.8413 | 235 | -1.24 | 0.2152 |
| visc | 387658 | 0.1829 | 1.5240 | 235 | 0.12 | 0.9046 |
| Intercept | 392316 | -6.2026 | 5.8341 | 235 | -1.06 | 0.2888 |
| visc | 392316 | -0.03217 | 1.5250 | 235 | -0.02 | 0.9832 |
| Intercept | 393936 | -21.7340 | 5.8308 | 235 | -3.73 | 0.0002 |
| visc | 393936 | 0.2773 | 1.5270 | 235 | 0.18 | 0.8560 |
| Intercept | 394588 | -34.2754 | 5.7974 | 235 | -5.91 | <.0001 |
| visc | 394588 | -0.07416 | 1.5355 | 235 | -0.05 | 0.9615 |
| Intercept | 397661 | -37.1794 | 5.8290 | 235 | -6.38 | <.0001 |
| visc | 397661 | -0.2142 | 1.5272 | 235 | -0.14 | 0.8886 |
| Intercept | 397931 | -13.7865 | 7.5025 | 235 | -1.84 | 0.0674 |
| visc | 397931 | 0.5729 | 1.5368 | 235 | 0.37 | 0.7097 |

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>1</td>
<td>128</td>
<td>16.85</td>
<td><.0001</td>
</tr>
</tbody>
</table>

The Mixed Procedure
The MEANS Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>N</th>
<th>Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>Participant/ID Number</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>slope</td>
<td>Std Err Pred</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>SlpSE</td>
<td>PCC/Number</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>pccn</td>
<td>Visit/Date/#3 (1)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>dvdate</td>
<td>24hr Urine (dL/24hr)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>vis</td>
<td>Serum:HDL (mg/dL) (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>urine24_c</td>
<td>Serum:Uric Acid (mg/dL) (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>surice_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>Urine:Albumin Excr (mg/24hr) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>Urine:Citrate Excr (mg/24h) (c)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>albe_ca</td>
<td>Urine:Sodium Excr (mEq/24h) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ecitre_ca</td>
<td>Correct Iothalamate Clear # 10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>esode_cc</td>
<td>BSA (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>xbdvdate</td>
<td>Hypertension yes/no # 12</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>cic</td>
<td>BMI (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>bsa_c</td>
<td>Age of participant</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>bmi_c</td>
<td>MDRD GFR</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>age</td>
<td>MDRD GFR</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrdkvs</td>
<td>MR K Vol/Sum Ster</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrrcvsv</td>
<td>MR C Vol/Sum Reg</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>visc</td>
<td>Percent MR Cyst Vol</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrrcysv</td>
<td>Relative Visit</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrrcysv</td>
<td>Log10 MR K Vol/Sum Ster</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrrcysv</td>
<td>Log10 MR C Vol/Sum Reg</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrdkvs</td>
<td>Log10 Urine:Albumin Excr (mg/24hr) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>mrdkvs</td>
<td>Log10 Urine:Citrate Excr (mg/24h) (c)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>mrdkvs</td>
<td>Log10 MDRD GFR</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrdkvs</td>
<td>Log10 Renal Blood Flow Corrected for BSA</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>lrvr</td>
<td>Log10 RVR corrected for BSA</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>lrpf</td>
<td>Log10 Remal Plasma Flow</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>lff</td>
<td>Log10 Filtration Fraction</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>race</td>
<td>Gene Type</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>sex</td>
<td>CIC < or >= 100?</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ind1_cic</td>
<td>CIC < or >= 85?</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>genetpye</td>
<td>Average Systolic BP over years</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Avgdiastol</td>
<td>Average Diastolic BP over years</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>sex</td>
</tr>
<tr>
<td>hdyn</td>
</tr>
</tbody>
</table>

Number of observations 131

NOTE: Due to missing values, only 107 observations can be used in this analysis.
The GLM Procedure

Dependent Variable: slope

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12</td>
<td>4.76158404</td>
<td>0.39679867</td>
<td>1.19</td>
<td>0.3028</td>
</tr>
<tr>
<td>Error</td>
<td>94</td>
<td>31.38445980</td>
<td>0.33387723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>106</td>
<td>36.14604385</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coeff Var</th>
<th>Root MSE</th>
<th>slope Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.131732</td>
<td>6432.977</td>
<td>0.577821</td>
<td>0.008982</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>0.42286899</td>
<td>0.42286899</td>
<td>1.27</td>
<td>0.2633</td>
</tr>
<tr>
<td>hdyn</td>
<td>1</td>
<td>0.03899588</td>
<td>0.03899588</td>
<td>0.12</td>
<td>0.7333</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>1.34137267</td>
<td>1.34137267</td>
<td>4.02</td>
<td>0.0479</td>
</tr>
<tr>
<td>lrbf</td>
<td>1</td>
<td>1.01781832</td>
<td>1.01781832</td>
<td>3.05</td>
<td>0.0841</td>
</tr>
<tr>
<td>bmi_c</td>
<td>1</td>
<td>0.23741495</td>
<td>0.23741495</td>
<td>0.71</td>
<td>0.4012</td>
</tr>
<tr>
<td>lmrskvs</td>
<td>1</td>
<td>0.81839366</td>
<td>0.81839366</td>
<td>2.45</td>
<td>0.1208</td>
</tr>
<tr>
<td>urine24_c</td>
<td>1</td>
<td>0.34824716</td>
<td>0.34824716</td>
<td>1.04</td>
<td>0.3097</td>
</tr>
<tr>
<td>esode_cc</td>
<td>1</td>
<td>0.12777359</td>
<td>0.12777359</td>
<td>0.38</td>
<td>0.5377</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>1</td>
<td>0.07649066</td>
<td>0.07649066</td>
<td>0.23</td>
<td>0.6333</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>1</td>
<td>0.07035122</td>
<td>0.07035122</td>
<td>0.21</td>
<td>0.6473</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>1</td>
<td>0.08174563</td>
<td>0.08174563</td>
<td>0.24</td>
<td>0.6219</td>
</tr>
<tr>
<td>surice_ca</td>
<td>1</td>
<td>0.34394024</td>
<td>0.34394024</td>
<td>1.03</td>
<td>0.3127</td>
</tr>
</tbody>
</table>

| Parameter | Estimate | Standard Error | t Value | Pr > |t|
|-----------|----------|----------------|---------|------|
| Intercept | -2.558168456 | B | 2.37854521 | -1.08 | 0.2849 |
| sex Female | 0.204864190 | B | 0.18203568 | 1.13 | 0.2633 |
| sex Male | 0.000000000 | B | . | . | . |
| hdyn N | 0.047857865 | B | 0.14003524 | 0.34 | 0.7333 |
| hdyn Y | 0.000000000 | B | . | . | . |
| age | 0.016635075 | B | 0.00829934 | 2.00 | 0.0479 |
| lrbf | 0.987185331 | B | 0.56540151 | 1.75 | 0.0841 |
| bmi_c | 0.011495102 | B | 0.01363177 | 0.84 | 0.4012 |
| lmrskvs | -0.534008445 | B | 0.34108326 | -1.57 | 0.1208 |
| urine24_c | -0.000063937 | B | 0.00006260 | -1.02 | 0.3097 |
| esode_cc | 0.000577588 | B | 0.00093366 | 0.62 | 0.5377 |
| lalbe_ca | 0.078131353 | B | 0.16323548 | 0.48 | 0.6333 |
Dependent Variable: slope

The GLM Procedure

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-------------|---------------|----------------|---------|------|---|
| lpldle_ca | 0.000828905 | 0.00180577 | 0.46 | 0.6473 | |
| lphdle_ca | -0.003078029 | 0.00622062 | -0.49 | 0.6219 | |
| surice_ca | 0.077269594 | 0.07613082 | 1.01 | 0.3127 | |

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.10940444</td>
<td>0.10322662</td>
<td>-0.21263105</td>
</tr>
<tr>
<td>2</td>
<td>0.02657697</td>
<td>-0.22043232</td>
<td>0.24700929</td>
</tr>
<tr>
<td>3</td>
<td>-0.39776348</td>
<td>-0.00580317</td>
<td>-0.39196031</td>
</tr>
<tr>
<td>4</td>
<td>0.08467595</td>
<td>-0.02993775</td>
<td>0.11461370</td>
</tr>
<tr>
<td>5</td>
<td>-0.05198054</td>
<td>0.07062046</td>
<td>-0.12260101</td>
</tr>
<tr>
<td>6</td>
<td>-0.22546946</td>
<td>-0.15593753</td>
<td>-0.06953194</td>
</tr>
<tr>
<td>7</td>
<td>0.14990936</td>
<td>0.09172811</td>
<td>0.05818125</td>
</tr>
<tr>
<td>8</td>
<td>0.56442283</td>
<td>0.12628021</td>
<td>0.43814262</td>
</tr>
<tr>
<td>9</td>
<td>1.15101839</td>
<td>0.34141542</td>
<td>0.80960297</td>
</tr>
<tr>
<td>10</td>
<td>0.06242914</td>
<td>0.01520989</td>
<td>0.04721924</td>
</tr>
<tr>
<td>11</td>
<td>0.55257333</td>
<td>0.29805673</td>
<td>0.25451659</td>
</tr>
<tr>
<td>12</td>
<td>-0.14021788</td>
<td>0.09106223</td>
<td>-0.23128011</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-0.93444399</td>
<td>-0.21863854</td>
<td>-0.71580545</td>
</tr>
<tr>
<td>15</td>
<td>-0.57594874</td>
<td>-0.26216513</td>
<td>-0.31378361</td>
</tr>
<tr>
<td>16</td>
<td>-0.21991819</td>
<td>-0.16569697</td>
<td>-0.05422122</td>
</tr>
<tr>
<td>17</td>
<td>0.10471468</td>
<td>-0.05550737</td>
<td>0.16022206</td>
</tr>
<tr>
<td>18</td>
<td>0.81889421</td>
<td>-0.07413677</td>
<td>0.89303099</td>
</tr>
<tr>
<td>19</td>
<td>0.21818547</td>
<td>-0.26501745</td>
<td>0.04683198</td>
</tr>
<tr>
<td>20</td>
<td>0.12385538</td>
<td>-0.15897975</td>
<td>0.28283513</td>
</tr>
<tr>
<td>21</td>
<td>-0.68476281</td>
<td>-0.20839850</td>
<td>-0.47636431</td>
</tr>
<tr>
<td>22</td>
<td>-0.39645105</td>
<td>-0.25433430</td>
<td>-0.14211676</td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.08323145</td>
<td>-0.11727664</td>
<td>0.20050810</td>
</tr>
<tr>
<td>25</td>
<td>0.37680205</td>
<td>-0.07947212</td>
<td>0.45627416</td>
</tr>
<tr>
<td>26</td>
<td>-0.38892916</td>
<td>0.10284263</td>
<td>-0.49177179</td>
</tr>
<tr>
<td>27</td>
<td>0.05375912</td>
<td>-0.12572115</td>
<td>0.17948027</td>
</tr>
<tr>
<td>28</td>
<td>-0.14212104</td>
<td>0.03564856</td>
<td>-0.17776960</td>
</tr>
<tr>
<td>29</td>
<td>0.77013459</td>
<td>0.08556980</td>
<td>0.68456479</td>
</tr>
<tr>
<td>30</td>
<td>-0.64691452</td>
<td>0.06209793</td>
<td>-0.70901245</td>
</tr>
<tr>
<td>31</td>
<td>1.24688098</td>
<td>0.44813860</td>
<td>0.79874239</td>
</tr>
<tr>
<td>32</td>
<td>-1.16309887</td>
<td>0.01980675</td>
<td>-1.18290562</td>
</tr>
<tr>
<td>33</td>
<td>-0.44351500</td>
<td>0.01192001</td>
<td>-0.45543502</td>
</tr>
<tr>
<td>34</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-0.22940279</td>
<td>0.29337371</td>
<td>-0.52277650</td>
</tr>
<tr>
<td>36</td>
<td>-1.53546898</td>
<td>-0.12447728</td>
<td>-1.41099170</td>
</tr>
<tr>
<td>37</td>
<td>0.43523466</td>
<td>0.08633595</td>
<td>0.34889871</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>0.78466215</td>
<td>0.25767409</td>
<td>0.52698806</td>
</tr>
<tr>
<td>39</td>
<td>-0.75224082</td>
<td>0.20130902</td>
<td>-0.95354984</td>
</tr>
<tr>
<td>40</td>
<td>0.10244933</td>
<td>0.23748463</td>
<td>-0.13503529</td>
</tr>
<tr>
<td>41</td>
<td>0.00103493</td>
<td>-0.01960591</td>
<td>0.02064084</td>
</tr>
<tr>
<td>42</td>
<td>0.79467331</td>
<td>0.18694610</td>
<td>0.60772721</td>
</tr>
<tr>
<td>43</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>-0.02323271</td>
<td>0.01164738</td>
<td>-0.03488008</td>
</tr>
<tr>
<td>45</td>
<td>0.00000000</td>
<td>0.08330722</td>
<td>-0.08330722</td>
</tr>
<tr>
<td>46</td>
<td>0.09255788</td>
<td>0.25528465</td>
<td>-0.16272677</td>
</tr>
<tr>
<td>47</td>
<td>0.78584557</td>
<td>0.12626986</td>
<td>0.65957571</td>
</tr>
<tr>
<td>48</td>
<td>-2.80303071</td>
<td>-0.33203184</td>
<td>-2.47099886</td>
</tr>
<tr>
<td>49</td>
<td>0.08478226</td>
<td>-0.00271979</td>
<td>0.08750205</td>
</tr>
<tr>
<td>50</td>
<td>-0.39946705</td>
<td>-0.61910568</td>
<td>0.21963863</td>
</tr>
<tr>
<td>51</td>
<td>0.84116466</td>
<td>0.01386823</td>
<td>0.82729644</td>
</tr>
<tr>
<td>52</td>
<td>-0.16276746</td>
<td>0.04750593</td>
<td>-0.21027339</td>
</tr>
<tr>
<td>53</td>
<td>0.14841175</td>
<td>-0.26780144</td>
<td>0.41621318</td>
</tr>
<tr>
<td>54</td>
<td>-0.57302412</td>
<td>-0.22408574</td>
<td>-0.34893839</td>
</tr>
<tr>
<td>55</td>
<td>0.16034610</td>
<td>0.03083930</td>
<td>0.12950680</td>
</tr>
<tr>
<td>56</td>
<td>-0.20365214</td>
<td>0.14317771</td>
<td>-0.34682985</td>
</tr>
<tr>
<td>57</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0.05498285</td>
<td>-0.03145809</td>
<td>0.08644094</td>
</tr>
<tr>
<td>59</td>
<td>0.84024609</td>
<td>0.05890864</td>
<td>0.78133746</td>
</tr>
<tr>
<td>60</td>
<td>-0.69337687</td>
<td>-0.06762558</td>
<td>-0.62575129</td>
</tr>
<tr>
<td>61</td>
<td>-0.29572218</td>
<td>0.10202151</td>
<td>-0.39774369</td>
</tr>
<tr>
<td>62</td>
<td>-0.26144389</td>
<td>-0.26862227</td>
<td>0.00717838</td>
</tr>
<tr>
<td>63</td>
<td>0.00065316</td>
<td>-0.02585056</td>
<td>0.02650371</td>
</tr>
<tr>
<td>64</td>
<td>1.01698012</td>
<td>0.52857533</td>
<td>0.48840479</td>
</tr>
<tr>
<td>65</td>
<td>-0.88734657</td>
<td>0.07345288</td>
<td>-0.96079945</td>
</tr>
<tr>
<td>66</td>
<td>-0.21147764</td>
<td>-0.28466650</td>
<td>0.07318885</td>
</tr>
<tr>
<td>67</td>
<td>-0.65366942</td>
<td>-0.29517932</td>
<td>-0.35849009</td>
</tr>
<tr>
<td>68</td>
<td>-0.39452140</td>
<td>-0.07740875</td>
<td>-0.31711265</td>
</tr>
<tr>
<td>69</td>
<td>0.11558870</td>
<td>-0.18755246</td>
<td>0.30314116</td>
</tr>
<tr>
<td>70</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>-0.71186515</td>
<td>-0.12434815</td>
<td>-0.58751700</td>
</tr>
<tr>
<td>72</td>
<td>0.30478238</td>
<td>0.05293122</td>
<td>0.25185116</td>
</tr>
<tr>
<td>73</td>
<td>-1.01180373</td>
<td>0.28562915</td>
<td>-1.29743288</td>
</tr>
<tr>
<td>74</td>
<td>0.09866891</td>
<td>0.03713269</td>
<td>0.06153622</td>
</tr>
<tr>
<td>Observation</td>
<td>Observed</td>
<td>Predicted</td>
<td>Residual</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>75</td>
<td>0.42154536</td>
<td>-0.17923934</td>
<td>0.60078470</td>
</tr>
<tr>
<td>76</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>0.30240718</td>
<td>-0.06736396</td>
<td>0.36977114</td>
</tr>
<tr>
<td>78</td>
<td>0.75510530</td>
<td>0.38802682</td>
<td>0.36707847</td>
</tr>
<tr>
<td>79</td>
<td>-0.18820305</td>
<td>-0.04508106</td>
<td>-0.14312199</td>
</tr>
<tr>
<td>80</td>
<td>0.26900149</td>
<td>0.06652310</td>
<td>0.20247839</td>
</tr>
<tr>
<td>81</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>-0.44443424</td>
<td>-0.06089324</td>
<td>-0.38354100</td>
</tr>
<tr>
<td>84</td>
<td>0.10631537</td>
<td>0.19748565</td>
<td>-0.09117028</td>
</tr>
<tr>
<td>85</td>
<td>0.22311195</td>
<td>0.11167143</td>
<td>0.11144051</td>
</tr>
<tr>
<td>86</td>
<td>0.51964182</td>
<td>0.21100682</td>
<td>0.30863500</td>
</tr>
<tr>
<td>87</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>-0.55170515</td>
<td>0.15085648</td>
<td>-0.70256162</td>
</tr>
<tr>
<td>89</td>
<td>0.68139258</td>
<td>0.00222116</td>
<td>0.67917142</td>
</tr>
<tr>
<td>90</td>
<td>0.00000000</td>
<td>0.12650654</td>
<td>-0.12650654</td>
</tr>
<tr>
<td>91</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>-0.02200515</td>
<td>-0.19320757</td>
<td>0.17120242</td>
</tr>
<tr>
<td>93</td>
<td>0.77565755</td>
<td>-0.20123558</td>
<td>0.97689313</td>
</tr>
<tr>
<td>94</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>-0.09584974</td>
<td>0.05027626</td>
<td>-0.14612600</td>
</tr>
<tr>
<td>96</td>
<td>0.37241352</td>
<td>-0.17529812</td>
<td>0.54771164</td>
</tr>
<tr>
<td>97</td>
<td>0.16951897</td>
<td>-0.45701188</td>
<td>0.62653085</td>
</tr>
<tr>
<td>98</td>
<td>-0.32154432</td>
<td>-0.14720835</td>
<td>-0.17433597</td>
</tr>
<tr>
<td>99</td>
<td>0.13352506</td>
<td>-0.00253065</td>
<td>0.13605571</td>
</tr>
<tr>
<td>100</td>
<td>0.18821544</td>
<td>0.16819290</td>
<td>0.02002254</td>
</tr>
<tr>
<td>101</td>
<td>0.52479943</td>
<td>-0.05253387</td>
<td>0.57733330</td>
</tr>
<tr>
<td>102</td>
<td>-0.39366757</td>
<td>0.10403482</td>
<td>-0.49770239</td>
</tr>
<tr>
<td>103</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>1.32509990</td>
<td>-0.01506356</td>
<td>1.34016346</td>
</tr>
<tr>
<td>105</td>
<td>0.31584752</td>
<td>-0.08623593</td>
<td>0.40208345</td>
</tr>
<tr>
<td>106</td>
<td>-0.22649963</td>
<td>-0.11952679</td>
<td>-0.10697284</td>
</tr>
<tr>
<td>107</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>0.14603820</td>
<td>0.08675183</td>
<td>0.05928637</td>
</tr>
<tr>
<td>109</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.67770833</td>
<td>0.54604911</td>
<td>0.13165922</td>
</tr>
<tr>
<td>114</td>
<td>0.15362265</td>
<td>0.57278376</td>
<td>-0.41916112</td>
</tr>
<tr>
<td>115</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>0.16657259</td>
<td>0.39225001</td>
<td>-0.22567743</td>
</tr>
<tr>
<td>118</td>
<td>0.03027705</td>
<td>0.08162461</td>
<td>-0.05134756</td>
</tr>
<tr>
<td>119</td>
<td>0.01660030</td>
<td>-0.06309258</td>
<td>0.07969288</td>
</tr>
<tr>
<td>120</td>
<td>0.52876387</td>
<td>0.40023428</td>
<td>0.12852959</td>
</tr>
<tr>
<td>121</td>
<td>-0.04164638</td>
<td>-0.13111453</td>
<td>0.08946814</td>
</tr>
<tr>
<td>122</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>-0.68157686</td>
<td>0.04794386</td>
<td>-0.72952072</td>
</tr>
<tr>
<td>124</td>
<td>0.18532442</td>
<td>0.28974756</td>
<td>-0.10442314</td>
</tr>
<tr>
<td>125</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>0.18288601</td>
<td>0.03528079</td>
<td>0.14760522</td>
</tr>
<tr>
<td>127</td>
<td>-0.03217497</td>
<td>0.03642111</td>
<td>-0.06859608</td>
</tr>
<tr>
<td>128</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>-0.07415967</td>
<td>-0.40172819</td>
<td>0.32756852</td>
</tr>
<tr>
<td>130</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>0.57286244</td>
<td>-0.37373555</td>
<td>0.94659799</td>
</tr>
</tbody>
</table>

* Observation was not used in this analysis

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Residuals</td>
<td>-0.00000000</td>
</tr>
<tr>
<td>Sum of Squared Residuals</td>
<td>31.38445980</td>
</tr>
<tr>
<td>Sum of Squared Residuals - Error SS</td>
<td>-0.00000000</td>
</tr>
<tr>
<td>First Order Autocorrelation</td>
<td>-0.16060882</td>
</tr>
<tr>
<td>Durbin-Watson D</td>
<td>2.29122637</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>MDRD_gfr</td>
</tr>
<tr>
<td>Covariance Structure</td>
<td>Variance Components</td>
</tr>
<tr>
<td>Subject Effect</td>
<td>pkdid</td>
</tr>
<tr>
<td>Estimation Method</td>
<td>ML</td>
</tr>
<tr>
<td>Residual Variance Method</td>
<td>Profile</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
<td>Model-Based</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
<td>Containment</td>
</tr>
</tbody>
</table>

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>131</td>
<td>200922 201800 201877 203328 204555 205758 206816 208820 208324 209281 213454 214376 215052 216086 220068 223343 223534 223635 224502 226640 229428 229733 232174 234053 234650 234795 235752 236202 237192 239960 241501 242715 243560 243738 244111 244831 245990 246620 247880 248712 252086 255765 256171 258950 263617 264225 264348 265171 268455 271043 271684 273214 273225 277490 281000 281977 283722 283935 285601 286095 290336 292362 293317 293598 294105 294511 295106 295940 298515 299663 300641 300696 300911 301157 301372 303868 304860 306546 312317 313195 313307 313893 316110 318562 320182 320957 321611 323837 325290 327055 327325 327933 331318 333324 334672 336167 336843 337315 342131 343097 343233 354494 358230 359308 364664 367836 368973 369941 370942 371021 374068 374687 376004 376252 380166 380998 383193 383744 385151 386040 386488 386758 387658 392316 393936 394588 397661 397931</td>
</tr>
</tbody>
</table>

Dimensions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance Parameters</td>
<td>3</td>
</tr>
<tr>
<td>Columns in X</td>
<td>2</td>
</tr>
<tr>
<td>Columns in Z Per Subject</td>
<td>2</td>
</tr>
<tr>
<td>Subjects</td>
<td>131</td>
</tr>
<tr>
<td>Max Obs Per Subject</td>
<td>4</td>
</tr>
<tr>
<td>Observations Used</td>
<td>495</td>
</tr>
<tr>
<td>Observations Not Used</td>
<td>29</td>
</tr>
<tr>
<td>Total Observations</td>
<td>524</td>
</tr>
</tbody>
</table>

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>4588.98509956</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4118.65229754</td>
<td>0.00001792</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4118.62261897</td>
<td>0.00000005</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4118.62254547</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>pkdid</td>
<td>508.25</td>
</tr>
<tr>
<td>visc</td>
<td>pkdid</td>
<td>2.6471</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>107.48</td>
</tr>
</tbody>
</table>

Fit Statistics

<table>
<thead>
<tr>
<th>Estimate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
<td>4118.6</td>
</tr>
<tr>
<td>AIC (smaller is better)</td>
<td>4128.6</td>
</tr>
<tr>
<td>AICC (smaller is better)</td>
<td>4128.7</td>
</tr>
<tr>
<td>BIC (smaller is better)</td>
<td>4143.0</td>
</tr>
</tbody>
</table>

Solution for Fixed Effects

| Effect | Estimate | Standard Error | DF | t Value | Pr > |t| |
|--------|----------|----------------|----|---------|------|----|
| Intercept | 86.9557 | 2.1135 | 130 | 41.14 | <.0001 |
| visc | -1.7914 | 0.4364 | 128 | -4.11 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|----------------|----------|---------|---------|---------|-------|-----|
| Intercept | 200922 | -6.0475 | 5.7868 | 235 | -1.05 | 0.2971 |
| visc | 200922 | -0.1094 | 1.5317 | 235 | -0.07 | 0.9431 |
| Intercept | 201800 | -4.9679 | 5.8476 | 235 | -0.85 | 0.3964 |
| visc | 201800 | 0.0265 | 1.5265 | 235 | 0.02 | 0.9861 |
| Intercept | 201877 | -6.7385 | 5.8311 | 235 | -1.16 | 0.2490 |
| visc | 201877 | -0.3978 | 1.5270 | 235 | -0.26 | 0.7947 |
| Intercept | 203328 | -11.9428 | 5.8897 | 235 | -2.03 | 0.0437 |
| visc | 203328 | 0.0847 | 1.5213 | 235 | 0.06 | 0.9557 |
| Intercept | 204555 | 2.8420 | 5.8353 | 235 | 0.49 | 0.6267 |
| visc | 204555 | -0.0519 | 1.5246 | 235 | -0.03 | 0.9728 |
| Intercept | 205758 | -11.9026 | 5.8367 | 235 | -2.04 | 0.0425 |
| visc | 205758 | -0.2255 | 1.5218 | 235 | -0.15 | 0.8823 |
| Intercept | 206816 | 0.7140 | 5.8266 | 235 | 0.12 | 0.9026 |
| visc | 206816 | 0.1499 | 1.5296 | 235 | 0.10 | 0.9220 |
| Intercept | 208280 | 0.9011 | 5.8328 | 235 | 0.15 | 0.8774 |
| visc | 208280 | 0.5644 | 1.5280 | 235 | 0.37 | 0.7122 |
| Intercept | 208324 | 41.4385 | 5.8897 | 235 | 7.11 | <.0001 |
| visc | 208324 | 1.1510 | 1.5280 | 235 | 0.75 | 0.4520 |
| Intercept | 209281 | 17.8187 | 5.8367 | 235 | 3.05 | 0.0025 |
| visc | 209281 | 0.0624 | 1.5325 | 235 | 0.04 | 0.9675 |
| Intercept | 213454 | 14.3513 | 5.8599 | 235 | 2.45 | 0.0151 |
| visc | 213454 | 0.5526 | 1.5192 | 235 | 0.36 | 0.7164 |
| Intercept | 214376 | 4.7091 | 5.8331 | 235 | 0.81 | 0.4203 |
| visc | 214376 | -0.1402 | 1.5299 | 235 | -0.09 | 0.9271 |
| Intercept | 215052 | 12.6025 | 6.4387 | 235 | 1.96 | 0.0515 |
| visc | 215052 | 0.1997 | 1.5132 | 235 | 0.13 | 0.8951 |
| Intercept | 216086 | -14.0923 | 5.8354 | 235 | -2.41 | 0.0165 |
| visc | 216086 | -0.9344 | 1.5295 | 235 | -0.61 | 0.5418 |
| Intercept | 220068 | -32.6156 | 5.8473 | 235 | -5.58 | <.0001 |
| visc | 220068 | -0.5759 | 1.5233 | 235 | -0.38 | 0.7057 |
| Intercept | 223343 | -1.2435 | 5.8413 | 235 | -0.21 | 0.8316 |
| visc | 223343 | -0.2199 | 1.5220 | 235 | -0.14 | 0.8852 |
| Intercept | 223534 | 12.2549 | 6.2776 | 235 | 1.95 | 0.0521 |
| visc | 223534 | 0.1047 | 1.5834 | 235 | 0.07 | 0.9473 |
| Intercept | 223635 | 73.3910 | 5.9185 | 235 | 12.40 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|----------------------|----------|--------------|----|---------|------|---|
| visc 223635 | 0.8189 | 1.4997 | 235 | 0.55 | 0.5856 |
| Intercept 224502 | 8.1608 | 5.7875 | 235 | 1.41 | 0.1598 |
| visc 226640 | -3.3779 | 5.8320 | 235 | -0.58 | 0.5630 |
| Intercept 229428 | -0.6848 | 1.5301 | 235 | -0.45 | 0.6549 |
| Intercept 229733 | -17.0435 | 5.8442 | 235 | -2.92 | 0.0039 |
| visc 229733 | -0.3965 | 1.5146 | 235 | -0.26 | 0.7937 |
| Intercept 232174 | 14.3338 | 6.3128 | 235 | 2.27 | 0.0241 |
| visc 232174 | 0.5059 | 1.5758 | 235 | 0.32 | 0.7484 |
| Intercept 234053 | 13.7783 | 5.8212 | 235 | 2.37 | 0.0187 |
| visc 234053 | 0.08323 | 1.5273 | 235 | -0.05 | 0.9567 |
| Intercept 234650 | -7.6621 | 5.8086 | 235 | -1.32 | 0.1884 |
| visc 234650 | 0.3768 | 1.5291 | 235 | 0.25 | 0.8056 |
| Intercept 234795 | 30.9234 | 7.5025 | 235 | 4.12 | <.0001 |
| visc 234795 | -0.3889 | 1.5368 | 235 | -0.25 | 0.8004 |
| Intercept 235752 | 12.3648 | 5.8855 | 235 | 2.10 | 0.0367 |
| visc 235752 | 0.05376 | 1.5342 | 235 | 0.04 | 0.9721 |
| Intercept 236202 | -27.2088 | 5.8337 | 235 | -4.66 | <.0001 |
| visc 236202 | -0.1421 | 1.5223 | 235 | -0.09 | 0.9257 |
| Intercept 237192 | 4.2641 | 5.8435 | 235 | 0.73 | 0.4663 |
| visc 237192 | 0.7701 | 1.5225 | 235 | 0.51 | 0.6135 |
| Intercept 239960 | -12.1890 | 5.8656 | 235 | -2.08 | 0.0388 |
| visc 239960 | -0.6469 | 1.5140 | 235 | -0.43 | 0.6696 |
| Intercept 241501 | 1.7368 | 5.9359 | 235 | 0.29 | 0.7701 |
| visc 241501 | 1.2469 | 1.4769 | 235 | 0.84 | 0.3994 |
| Intercept 242715 | 13.8159 | 5.8600 | 235 | 2.36 | 0.0192 |
| visc 242715 | -1.1631 | 1.5219 | 235 | -0.76 | 0.4455 |
| Intercept 243560 | 11.1695 | 5.8399 | 235 | 1.91 | 0.0570 |
| visc 243560 | -0.4435 | 1.5261 | 235 | -0.29 | 0.7716 |
| Intercept 243738 | 12.9280 | 5.8223 | 235 | -2.22 | 0.0273 |
| visc 243738 | -0.4577 | 1.5297 | 235 | -0.30 | 0.7650 |
| Intercept 244111 | 33.5006 | 5.8800 | 235 | 5.70 | <.0001 |
| visc 244111 | -0.2294 | 1.5081 | 235 | -0.15 | 0.8792 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|--------|------|---|
| Intercept | 244831 | 61.4392 | 5.8568 | 235 | 10.49 | <.0001 |
| visc | 244831 | -1.5355 | 1.5301 | 235 | -1.00 | 0.3166 |
| Intercept | 245990 | 37.0284 | 5.8713 | 235 | 6.31 | <.0001 |
| visc | 245990 | 0.4352 | 1.5014 | 235 | 0.29 | 0.7722 |
| Intercept | 246620 | 17.9268 | 5.8718 | 235 | 3.05 | 0.0025 |
| visc | 246620 | 0.7847 | 1.5218 | 235 | 0.52 | 0.6066 |
| Intercept | 247880 | 18.0823 | 5.8799 | 235 | 3.08 | 0.0024 |
| visc | 247880 | -0.7522 | 1.5087 | 235 | -0.50 | 0.6185 |
| Intercept | 248712 | -15.6888 | 5.8778 | 235 | -2.67 | 0.0081 |
| visc | 248712 | 0.1024 | 1.5015 | 235 | 0.07 | 0.9464 |
| Intercept | 252086 | -22.3067 | 5.8636 | 235 | -3.80 | 0.0002 |
| visc | 252086 | 0.001035 | 1.5235 | 235 | 0.00 | 0.9995 |
| Intercept | 255765 | 5.1880 | 5.8314 | 235 | 0.89 | 0.3746 |
| visc | 255765 | 0.7947 | 1.5282 | 235 | 0.52 | 0.6035 |
| Intercept | 256171 | -8.0270 | 5.7758 | 235 | -1.39 | 0.1659 |
| visc | 256171 | -0.03103 | 1.5366 | 235 | -0.02 | 0.9839 |
| Intercept | 258950 | -15.3260 | 7.2558 | 235 | -2.11 | 0.0357 |
| visc | 258950 | -0.02323 | 1.6155 | 235 | -0.01 | 0.9885 |
| Intercept | 259940 | 22.8925 | 9.5792 | 235 | 2.39 | 0.0176 |
| visc | 259940 | 0 | 1.6270 | 235 | 0.00 | 1.0000 |
| Intercept | 263617 | -6.1235 | 5.8456 | 235 | -1.05 | 0.2959 |
| visc | 263617 | 0.09256 | 1.5264 | 235 | 0.06 | 0.9517 |
| Intercept | 264225 | 57.4979 | 5.8476 | 235 | 9.83 | <.0001 |
| visc | 264225 | 0.7858 | 1.5206 | 235 | 0.52 | 0.6058 |
| Intercept | 264348 | 88.0580 | 5.8203 | 235 | 15.13 | <.0001 |
| visc | 264348 | -2.8030 | 1.5286 | 235 | -1.83 | 0.0680 |
| Intercept | 265171 | 16.1658 | 5.8402 | 235 | 2.77 | 0.0061 |
| visc | 265171 | 0.08478 | 1.5260 | 235 | 0.06 | 0.9557 |
| Intercept | 268455 | -19.4019 | 5.8770 | 235 | -3.30 | 0.0011 |
| visc | 268455 | -0.3995 | 1.5222 | 235 | -0.26 | 0.7932 |
| Intercept | 271043 | 38.7552 | 5.8454 | 235 | 6.63 | <.0001 |
| visc | 271043 | 0.8412 | 1.5051 | 235 | 0.56 | 0.5768 |
| Intercept | 271460 | -1.3058 | 5.8261 | 235 | -0.22 | 0.8228 |
| visc | 271460 | -0.1628 | 1.5273 | 235 | -0.11 | 0.9152 |
| Intercept | 271662 | 0.5242 | 7.2505 | 235 | 0.07 | 0.9424 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|----------|-----|---------|------|---|
| visc | 271662 | 0.1484 | 1.6173 | 235 | 0.09 | 0.9270 |
| Intercept | 271684 | 49.0311 | 5.8670 | 235 | 8.36 | <.0001 |
| visc | 271684 | -0.5730 | 1.5202 | 235 | -0.38 | 0.7066 |
| Intercept | 273214 | 5.3112 | 5.7733 | 235 | 0.92 | 0.3585 |
| visc | 273214 | 0.1603 | 1.5371 | 235 | 0.10 | 0.9170 |
| Intercept | 273225 | -10.4263 | 7.3637 | 235 | -1.42 | 0.1581 |
| visc | 273225 | -0.2037 | 1.5809 | 235 | -0.13 | 0.8976 |
| Intercept | 277490 | 16.4729 | 5.8505 | 235 | 2.82 | 0.0053 |
| visc | 277490 | -0.8982 | 1.5217 | 235 | -0.59 | 0.5556 |
| Intercept | 281000 | 15.1206 | 5.8157 | 235 | 2.60 | 0.0099 |
| visc | 281000 | 0.05498 | 1.5290 | 235 | 0.04 | 0.9713 |
| Intercept | 281977 | 0.1460 | 5.8417 | 235 | 0.03 | 0.9801 |
| visc | 281977 | -0.8402 | 1.5254 | 235 | 0.55 | 0.5823 |
| Intercept | 283722 | 44.2205 | 5.8189 | 235 | 7.60 | <.0001 |
| visc | 283722 | -0.6934 | 1.5247 | 235 | -0.45 | 0.6497 |
| Intercept | 283935 | -17.1939 | 6.3025 | 235 | -2.73 | 0.0069 |
| visc | 283935 | -0.2957 | 1.5768 | 235 | -0.19 | 0.8514 |
| Intercept | 285601 | -3.7377 | 5.8486 | 235 | -0.64 | 0.5234 |
| visc | 285601 | -0.2614 | 1.5256 | 235 | -0.17 | 0.8641 |
| Intercept | 286095 | 7.5609 | 5.8342 | 235 | 1.30 | 0.1963 |
| visc | 286095 | 0.000653 | 1.5259 | 235 | 0.00 | 0.9997 |
| Intercept | 290336 | 26.7934 | 5.8773 | 235 | 4.56 | <.0001 |
| visc | 290336 | 1.0170 | 1.5214 | 235 | 0.67 | 0.5045 |
| Intercept | 292362 | -16.4076 | 5.9085 | 235 | -2.78 | 0.0059 |
| visc | 292362 | -0.8873 | 1.5163 | 235 | -0.59 | 0.5590 |
| Intercept | 293317 | -20.0057 | 5.8099 | 235 | -3.44 | 0.0007 |
| visc | 293317 | -0.2115 | 1.5206 | 235 | -0.14 | 0.8895 |
| Intercept | 293598 | -34.2377 | 6.2931 | 235 | -5.44 | <.0001 |
| visc | 293598 | -0.6537 | 1.5819 | 235 | -0.41 | 0.6798 |
| Intercept | 294105 | -23.8736 | 6.4190 | 235 | -3.72 | 0.0002 |
| visc | 294105 | -0.3945 | 1.5294 | 235 | -0.26 | 0.7967 |
| Intercept | 294511 | 44.2341 | 5.8563 | 235 | 7.55 | <.0001 |
| visc | 294511 | 0.1156 | 1.5234 | 235 | 0.08 | 0.9396 |
| Intercept | 295106 | 18.5181 | 5.8530 | 235 | 3.16 | 0.0018 |
| visc | 295106 | 0.06591 | 1.5164 | 235 | 0.04 | 0.9654 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|-----------------------|----------|---------|--------|---------|------|---|
| Intercept | 295940 | -10.3429 | 5.8202 | 235 | -1.78 | 0.0768 |
| visc | 295940 | -0.7119 | 1.5230 | 235 | -0.47 | 0.6406 |
| Intercept | 298515 | -22.8923 | 5.8212 | 235 | -3.93 | 0.0001 |
| visc | 298515 | 0.3048 | 1.5277 | 235 | 0.20 | 0.8420 |
| Intercept | 299663 | -16.3977 | 5.8706 | 235 | -2.79 | 0.0056 |
| visc | 299663 | -1.0118 | 1.5128 | 235 | -0.67 | 0.5043 |
| Intercept | 300641 | -7.0306 | 5.8235 | 235 | -1.21 | 0.2285 |
| visc | 300641 | 0.0987 | 1.5265 | 235 | 0.06 | 0.9485 |
| Intercept | 300696 | -22.4713 | 5.8372 | 235 | -3.85 | 0.0002 |
| visc | 300696 | 0.4215 | 1.5247 | 235 | 0.28 | 0.7824 |
| Intercept | 300911 | -6.9477 | 6.2667 | 235 | -1.11 | 0.2687 |
| visc | 300911 | -0.1933 | 1.5851 | 235 | -0.12 | 0.9030 |
| Intercept | 301157 | -28.6612 | 5.8266 | 235 | -4.92 | <.0001 |
| visc | 301157 | 0.3024 | 1.5276 | 235 | 0.20 | 0.8432 |
| Intercept | 301372 | -4.5728 | 5.8170 | 235 | -0.79 | 0.4326 |
| visc | 301372 | 0.7551 | 1.5307 | 235 | 0.49 | 0.6223 |
| Intercept | 303868 | 15.9180 | 5.8474 | 235 | 2.72 | 0.0070 |
| visc | 303868 | -0.1882 | 1.5216 | 235 | -0.12 | 0.9017 |
| Intercept | 304860 | -16.5444 | 5.8199 | 235 | -2.84 | 0.0049 |
| visc | 304860 | 0.2690 | 1.5287 | 235 | 0.18 | 0.8605 |
| Intercept | 306546 | -18.0535 | 5.8462 | 235 | -3.09 | 0.0023 |
| visc | 306546 | 0.1891 | 1.5247 | 235 | 0.12 | 0.9014 |
| Intercept | 312317 | 25.6267 | 5.8148 | 235 | 4.41 | <.0001 |
| visc | 312317 | -0.5415 | 1.5315 | 235 | -0.35 | 0.7240 |
| Intercept | 313195 | -0.6581 | 5.8461 | 235 | -0.11 | 0.9105 |
| visc | 313195 | -0.4444 | 1.5219 | 235 | -0.29 | 0.7705 |
| Intercept | 313307 | -17.0098 | 5.8287 | 235 | -2.92 | 0.0039 |
| visc | 313307 | 0.1063 | 1.5274 | 235 | 0.07 | 0.9446 |
| Intercept | 313893 | -4.1483 | 5.8271 | 235 | -0.71 | 0.4772 |
| visc | 313893 | 0.2231 | 1.5291 | 235 | 0.15 | 0.8841 |
| Intercept | 316110 | 1.3923 | 5.8283 | 235 | 0.24 | 0.8114 |
| visc | 316110 | 0.5196 | 1.5287 | 235 | 0.34 | 0.7342 |
| Intercept | 318562 | -10.8196 | 5.8212 | 235 | -1.86 | 0.0643 |
| visc | 318562 | -0.0365 | 1.5331 | 235 | -0.02 | 0.9810 |
| Intercept | 320182 | -7.0751 | 5.8471 | 235 | -1.21 | 0.2275 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|------|-----|---------|-------|---|
| visc | 320182 | -0.5517 | 1.5238 | 235 | -0.36| 0.7176 |
| Intercept | 320957 | 10.7324 | 5.8242 | 235 | 1.84 | 0.0666 |
| visc | 320957 | 0.6814 | 1.5277 | 235 | 0.45 | 0.6560 |
| Intercept | 321611 | -28.6912 | 9.5792 | 235 | -3.00| 0.0030 |
| visc | 323837 | 0.4854 | 1.5224 | 235 | 0.32 | 0.7501 |
| Intercept | 325290 | -27.1775 | 5.8213 | 235 | -4.67| <0.0001 |
| visc | 325290 | -0.0220 | 1.5278 | 235 | -0.01| 0.9885 |
| Intercept | 327055 | -5.6136 | 5.8121 | 235 | -0.97| 0.3351 |
| visc | 327055 | 0.7757 | 1.5319 | 235 | 0.51 | 0.6131 |
| Intercept | 327325 | -9.0526 | 5.8429 | 235 | -1.55| 0.1226 |
| visc | 327325 | 0.4323 | 1.5268 | 235 | 0.28 | 0.7773 |
| Intercept | 327933 | -18.4197 | 5.8257 | 235 | -3.16| 0.0018 |
| visc | 327933 | -0.0958 | 1.5278 | 235 | -0.06| 0.9500 |
| Intercept | 331318 | 7.0802 | 5.8337 | 235 | 1.21 | 0.2261 |
| visc | 331318 | 0.3724 | 1.5276 | 235 | 0.24 | 0.8076 |
| Intercept | 333524 | -26.1140 | 5.8281 | 235 | -4.48| <0.0001 |
| visc | 333524 | 0.1695 | 1.5275 | 235 | 0.11 | 0.9111 |
| Intercept | 334672 | -8.8319 | 5.8755 | 235 | -1.50| 0.1341 |
| visc | 334672 | -0.3215 | 1.5077 | 235 | -0.21| 0.8313 |
| Intercept | 336167 | 4.0129 | 5.7590 | 235 | 0.70 | 0.4866 |
| visc | 336167 | 0.1335 | 1.5465 | 235 | 0.09 | 0.9313 |
| Intercept | 336843 | -12.1319 | 5.8287 | 235 | -2.08| 0.0385 |
| visc | 336843 | 0.1882 | 1.5274 | 235 | 0.12 | 0.9020 |
| Intercept | 337315 | 11.0303 | 5.8229 | 235 | 1.89 | 0.0594 |
| visc | 337315 | 0.5248 | 1.5288 | 235 | 0.34 | 0.7317 |
| Intercept | 342131 | 1.2054 | 5.8340 | 235 | 0.21 | 0.8365 |
| visc | 342131 | -0.3937 | 1.5234 | 235 | -0.26| 0.7963 |
| Intercept | 343097 | -30.1102 | 5.8355 | 235 | -5.16| <0.0001 |
| visc | 343097 | -0.6349 | 1.5262 | 235 | -0.42| 0.6778 |
| Intercept | 343233 | 21.1005 | 5.8161 | 235 | 3.63 | 0.0004 |
| visc | 343233 | 1.3251 | 1.5325 | 235 | 0.86 | 0.3881 |
| Intercept | 354494 | -10.7608 | 6.5425 | 235 | -1.64| 0.1014 |
| visc | 354494 | 0.3158 | 1.5307 | 235 | 0.21 | 0.8367 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|----------|-----------------------|----------|--------------|-----|---------|------|---|
| Intercept| 358230 | -19.5687 | 5.8347 | 235 | -3.35 | 0.0009 |
| | | -0.2265 | 1.5288 | 235 | -0.15 | 0.8823 |
| Intercept| 359308 | 4.1433 | 5.8352 | 235 | 0.71 | 0.4784 |
| | | 0.1808 | 1.5264 | 235 | 0.12 | 0.9058 |
| Intercept| 364664 | -13.0826 | 5.8292 | 235 | -2.24 | 0.0257 |
| | | 0.1460 | 1.5261 | 235 | 0.10 | 0.9238 |
| Intercept| 367836 | -23.9513 | 5.8097 | 235 | -4.12 | <0.0001 |
| | | -0.7090 | 1.5286 | 235 | -0.46 | 0.6432 |
| Intercept| 368973 | 2.0594 | 6.2699 | 235 | 0.33 | 0.7429 |
| | | 0.06143 | 1.5841 | 235 | 0.04 | 0.9691 |
| Intercept| 369941 | -2.4963 | 6.3880 | 235 | -0.39 | 0.6963 |
| | | 0.03767 | 1.5338 | 235 | 0.02 | 0.9804 |
| Intercept| 370942 | 7.5146 | 6.2626 | 235 | 1.20 | 0.2314 |
| | | 0.3188 | 1.5860 | 235 | 0.20 | 0.8409 |
| Intercept| 371021 | 0.7394 | 5.8297 | 235 | 0.13 | 0.8992 |
| | | 0.6777 | 1.5271 | 235 | 0.44 | 0.6576 |
| Intercept| 374068 | 2.7687 | 6.4056 | 235 | 0.43 | 0.6660 |
| | | 0.1536 | 1.5214 | 235 | 0.10 | 0.9197 |
| Intercept| 374687 | -4.4796 | 5.8191 | 235 | -0.77 | 0.4422 |
| | | -0.2094 | 1.5312 | 235 | -0.14 | 0.8913 |
| Intercept| 376004 | -32.1270 | 5.8226 | 235 | -5.52 | <0.0001 |
| | | -0.2132 | 1.5290 | 235 | -0.14 | 0.8892 |
| Intercept| 376252 | -5.7751 | 5.8140 | 235 | -0.99 | 0.3216 |
| | | 0.1666 | 1.5327 | 235 | 0.11 | 0.9136 |
| Intercept| 380166 | 0.3440 | 5.8075 | 235 | 0.06 | 0.9528 |
| | | 0.03028 | 1.5313 | 235 | 0.02 | 0.9842 |
| Intercept| 380998 | -3.4476 | 5.8291 | 235 | -0.59 | 0.5548 |
| | | 0.01660 | 1.5266 | 235 | 0.01 | 0.9913 |
| Intercept| 383193 | -3.1516 | 5.8253 | 235 | -0.54 | 0.5890 |
| | | 0.5288 | 1.5264 | 235 | 0.35 | 0.7293 |
| Intercept| 383744 | -10.6776 | 5.8568 | 235 | -1.82 | 0.0696 |
| | | -0.04165 | 1.5215 | 235 | -0.03 | 0.9782 |
| Intercept| 385151 | 7.0469 | 6.2678 | 235 | 1.12 | 0.2620 |
| | | 0.09182 | 1.5842 | 235 | 0.06 | 0.9538 |
| Intercept| 386040 | -39.1883 | 5.8594 | 235 | -6.69 | <0.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|-----|---------|-------|---|
| visc | 386040 | -0.6816 | 1.5163 | 235 | -0.45 | 0.6535 |
| Intercept | 386488 | -15.7972 | 5.8296 | 235 | -2.71 | 0.0072 |
| visc | 386488 | 0.1853 | 1.5290 | 235 | 0.12 | 0.9036 |
| Intercept | 386758 | -5.6267 | 5.8461 | 235 | -0.96 | 0.3368 |
| visc | 386758 | 0.3320 | 1.5219 | 235 | 0.22 | 0.8275 |
| Intercept | 387658 | -7.2596 | 5.8413 | 235 | -1.24 | 0.2152 |
| visc | 387658 | 0.1829 | 1.5240 | 235 | 0.12 | 0.9046 |
| Intercept | 392316 | -6.2026 | 5.8341 | 235 | -1.06 | 0.2888 |
| visc | 392316 | -0.03217 | 1.5250 | 235 | -0.02 | 0.9832 |
| Intercept | 393936 | -21.7340 | 5.8308 | 235 | -3.73 | 0.0002 |
| visc | 393936 | 0.2773 | 1.5270 | 235 | 0.18 | 0.8560 |
| Intercept | 394588 | -34.2754 | 5.7974 | 235 | -5.91 | <.0001 |
| visc | 394588 | -0.07416 | 1.5355 | 235 | -0.05 | 0.9615 |
| Intercept | 397661 | -37.1794 | 5.8290 | 235 | -6.38 | <.0001 |
| visc | 397661 | -0.2142 | 1.5272 | 235 | -0.14 | 0.8886 |
| Intercept | 397931 | -13.7865 | 7.5025 | 235 | -1.84 | 0.0674 |
| visc | 397931 | 0.5729 | 1.5368 | 235 | 0.37 | 0.7097 |

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>1</td>
<td>128</td>
<td>16.85</td>
<td><.0001</td>
</tr>
</tbody>
</table>
The MEANS Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>N Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>Participant/ID Number</td>
<td>0</td>
</tr>
<tr>
<td>slope</td>
<td>Std Err Pred</td>
<td>0</td>
</tr>
<tr>
<td>SlpSE</td>
<td>PCC/Number</td>
<td>0</td>
</tr>
<tr>
<td>pccn</td>
<td>Visit/Date/#3 (1)</td>
<td>1</td>
</tr>
<tr>
<td>dvdate</td>
<td>24hr Urine (dL/24hr)</td>
<td>1</td>
</tr>
<tr>
<td>vis</td>
<td>Serum:Uric Acid (mg/dL) (c)</td>
<td>0</td>
</tr>
<tr>
<td>urine24_c</td>
<td>Serum:HDLL (mg/dL) (c)</td>
<td>0</td>
</tr>
<tr>
<td>surice_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td>17</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>Urine:Albumin Excr (mg/24hr) (c)</td>
<td>2</td>
</tr>
<tr>
<td>lpdlle_ca</td>
<td>Urine:Citrate Excr (mg/24h) (c)</td>
<td>5</td>
</tr>
<tr>
<td>albe_ca</td>
<td>Urine:Sodium Excr (mEq/24h) (c)</td>
<td>2</td>
</tr>
<tr>
<td>ecitre_ca</td>
<td>Visit/Date</td>
<td>0</td>
</tr>
<tr>
<td>esode_cc</td>
<td>Correct Iothalamic Clear # 10</td>
<td>1</td>
</tr>
<tr>
<td>xbdvdate</td>
<td>BSA (c)</td>
<td>0</td>
</tr>
<tr>
<td>cic</td>
<td>Hypertension yes/no/ # 12</td>
<td>0</td>
</tr>
<tr>
<td>bsa_c</td>
<td>BMI (c)</td>
<td>0</td>
</tr>
<tr>
<td>hdyh</td>
<td>Age of participant</td>
<td>0</td>
</tr>
<tr>
<td>age</td>
<td>MDRD GFR</td>
<td>0</td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>MDRD GFR</td>
<td>0</td>
</tr>
<tr>
<td>mrskvs</td>
<td>MR K Vol/Sum Ster</td>
<td>0</td>
</tr>
<tr>
<td>mrrcvs</td>
<td>MR C Vol/Sum Reg</td>
<td>0</td>
</tr>
<tr>
<td>visc</td>
<td>Relative Visit</td>
<td>0</td>
</tr>
<tr>
<td>mrctps</td>
<td>Percent MR Cyst Vol</td>
<td>0</td>
</tr>
<tr>
<td>lnmrskvs</td>
<td>Log10 MR K Vol/Sum Ster</td>
<td>0</td>
</tr>
<tr>
<td>lnmrrcvs</td>
<td>Log10 MR C Vol/Sum Reg</td>
<td>0</td>
</tr>
<tr>
<td>llabe_ca</td>
<td>Log10 Urine:Albumin Excr (mg/24hr) (c)</td>
<td>2</td>
</tr>
<tr>
<td>llectire_ca</td>
<td>Log10 Urine:Citrate Excr (mg/24h) (c)</td>
<td>5</td>
</tr>
<tr>
<td>lMDRD_GFR</td>
<td>Log10 MDRD GFR</td>
<td>0</td>
</tr>
<tr>
<td>lrbf</td>
<td>Log10 Renal Blood Flow Corrected for BSA</td>
<td>8</td>
</tr>
<tr>
<td>lrvr</td>
<td>Log10 RVR corrected for BSA</td>
<td>11</td>
</tr>
<tr>
<td>lrpf</td>
<td>Log10 Remal Plasma Flow</td>
<td>8</td>
</tr>
<tr>
<td>lff</td>
<td>Log10 Filtration Fraction</td>
<td>9</td>
</tr>
<tr>
<td>race</td>
<td>CIC < or >= 100?</td>
<td>1</td>
</tr>
<tr>
<td>sex</td>
<td>Gene Type</td>
<td>0</td>
</tr>
<tr>
<td>ind1_cic</td>
<td>CIC < or >= 85?</td>
<td>1</td>
</tr>
<tr>
<td>ind2_cic</td>
<td>Average Systolic BP over years</td>
<td>0</td>
</tr>
<tr>
<td>genetype</td>
<td>Average Diastolic BP over years</td>
<td>0</td>
</tr>
<tr>
<td>Avg systol</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Avg diastol</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>sex</td>
</tr>
<tr>
<td>hdyn</td>
</tr>
</tbody>
</table>

Number of observations: 131

NOTE: Due to missing values, only 107 observations can be used in this analysis.
The GLM Procedure

Dependent Variable: slope

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12</td>
<td>5.30710785</td>
<td>0.44225899</td>
<td>1.35</td>
<td>0.2054</td>
</tr>
<tr>
<td>Error</td>
<td>94</td>
<td>30.83893600</td>
<td>0.32807379</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>106</td>
<td>36.14604385</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coeff Var</th>
<th>Root MSE</th>
<th>slope Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.146824</td>
<td>6376.823</td>
<td>0.572777</td>
<td>0.008982</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>0.58935863</td>
<td>0.58935863</td>
<td>1.80</td>
<td>0.1834</td>
</tr>
<tr>
<td>hdyn</td>
<td>1</td>
<td>0.00001534</td>
<td>0.00001534</td>
<td>0.00</td>
<td>0.9946</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>1.47473046</td>
<td>1.47473046</td>
<td>4.50</td>
<td>0.0366</td>
</tr>
<tr>
<td>lrbf</td>
<td>1</td>
<td>0.77953411</td>
<td>0.77953411</td>
<td>2.38</td>
<td>0.1266</td>
</tr>
<tr>
<td>bmi_c</td>
<td>1</td>
<td>0.19215138</td>
<td>0.19215138</td>
<td>0.59</td>
<td>0.4460</td>
</tr>
<tr>
<td>lmrrcvs</td>
<td>1</td>
<td>1.36391746</td>
<td>1.36391746</td>
<td>4.16</td>
<td>0.0443</td>
</tr>
<tr>
<td>urine24_c</td>
<td>1</td>
<td>0.34433125</td>
<td>0.34433125</td>
<td>1.05</td>
<td>0.3082</td>
</tr>
<tr>
<td>esode_cc</td>
<td>1</td>
<td>0.16611244</td>
<td>0.16611244</td>
<td>0.51</td>
<td>0.4785</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>1</td>
<td>0.13018666</td>
<td>0.13018666</td>
<td>0.40</td>
<td>0.5303</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>1</td>
<td>0.03846845</td>
<td>0.03846845</td>
<td>0.12</td>
<td>0.7328</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>1</td>
<td>0.12828207</td>
<td>0.12828207</td>
<td>0.39</td>
<td>0.5333</td>
</tr>
<tr>
<td>surice_ca</td>
<td>1</td>
<td>0.34393625</td>
<td>0.34393625</td>
<td>1.05</td>
<td>0.3085</td>
</tr>
</tbody>
</table>

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-----------------|----------|----------------|---------|------|---|
| Intercept | -2.900668534 | 2.16412484 | -1.34 | 0.1834 |
| sex Female | 0.243379076 | 0.18158467 | 1.34 | 0.1834 |
| sex Male | 0.000000000 | | | | |
| hdyn N | -0.000983460 | 0.14382231 | -0.01 | 0.9946 |
| hdyn Y | 0.000000000 | | | | |
| age | 0.017339989 | 0.00817859 | 2.12 | 0.0366 |
| lrbf | 0.873745510 | 0.56683043 | 1.54 | 0.1266 |
| bmi_c | 0.010308431 | 0.01346966 | 0.77 | 0.4460 |
| lmrrcvs | -0.357657505 | 0.17541190 | -2.04 | 0.0443 |
| urine24_c | -0.000063576 | 0.00006206 | -1.02 | 0.3082 |
| esode_cc | 0.000658660 | 0.00092565 | 0.71 | 0.4785 |
| lalbe_ca | 0.100745417 | 0.15992922 | 0.63 | 0.5303 |
The GLM Procedure

Dependent Variable: slope

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-------------|------------|----------------|---------|------|---|
| lpldle_ca | 0.000614148| 0.00179352 | 0.34 | 0.7328 |
| lphdle_ca | -0.003871627| 0.00619151 | -0.63 | 0.5333 |
| surice_ca | 0.077263640| 0.07546090 | 1.02 | 0.3085 |

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.10940444</td>
<td>0.11670551</td>
<td>-0.22610995</td>
</tr>
<tr>
<td>2</td>
<td>0.02657697</td>
<td>-0.17451122</td>
<td>0.20108818</td>
</tr>
<tr>
<td>3</td>
<td>-0.39776348</td>
<td>0.00080964</td>
<td>-0.39857312</td>
</tr>
<tr>
<td>4</td>
<td>0.08467595</td>
<td>-0.02670906</td>
<td>0.11138501</td>
</tr>
<tr>
<td>5</td>
<td>-0.05198054</td>
<td>0.02150478</td>
<td>-0.07348532</td>
</tr>
<tr>
<td>6</td>
<td>-0.22546946</td>
<td>-0.14157550</td>
<td>-0.08389397</td>
</tr>
<tr>
<td>7</td>
<td>0.14990936</td>
<td>0.03161474</td>
<td>0.11829461</td>
</tr>
<tr>
<td>8</td>
<td>0.56442283</td>
<td>0.10884169</td>
<td>0.4558114</td>
</tr>
<tr>
<td>9</td>
<td>1.15101839</td>
<td>0.31227371</td>
<td>0.83874468</td>
</tr>
<tr>
<td>10</td>
<td>0.06242914</td>
<td>-0.06816627</td>
<td>0.13059541</td>
</tr>
<tr>
<td>11</td>
<td>0.55257333</td>
<td>0.34542706</td>
<td>0.20714627</td>
</tr>
<tr>
<td>12</td>
<td>-0.14021788</td>
<td>0.06249273</td>
<td>-0.20271061</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>14</td>
<td>-0.93444399</td>
<td>-0.18147558</td>
<td>-0.75296841</td>
</tr>
<tr>
<td>15</td>
<td>-0.57594874</td>
<td>-0.22725572</td>
<td>-0.34869302</td>
</tr>
<tr>
<td>16</td>
<td>-0.21991819</td>
<td>-0.16408148</td>
<td>-0.05583671</td>
</tr>
<tr>
<td>17</td>
<td>0.10471468</td>
<td>-0.12379227</td>
<td>0.22850696</td>
</tr>
<tr>
<td>18</td>
<td>0.81889421</td>
<td>-0.02504735</td>
<td>0.84394156</td>
</tr>
<tr>
<td>19</td>
<td>-0.21818547</td>
<td>-0.29003497</td>
<td>0.07184950</td>
</tr>
<tr>
<td>20</td>
<td>0.12385538</td>
<td>-0.18098791</td>
<td>0.30484329</td>
</tr>
<tr>
<td>21</td>
<td>-0.68476281</td>
<td>-0.18691741</td>
<td>-0.49784540</td>
</tr>
<tr>
<td>22</td>
<td>-0.39645105</td>
<td>-0.27919970</td>
<td>-0.11725135</td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>24</td>
<td>0.08323145</td>
<td>-0.14879317</td>
<td>0.23202462</td>
</tr>
<tr>
<td>25</td>
<td>0.37680205</td>
<td>-0.14973347</td>
<td>0.52653552</td>
</tr>
<tr>
<td>26</td>
<td>-0.38892916</td>
<td>0.13566407</td>
<td>-0.52459323</td>
</tr>
<tr>
<td>27</td>
<td>0.05375912</td>
<td>-0.12865790</td>
<td>0.18241702</td>
</tr>
<tr>
<td>28</td>
<td>-0.14212104</td>
<td>0.01015968</td>
<td>-0.15228072</td>
</tr>
<tr>
<td>29</td>
<td>0.77013459</td>
<td>0.09678237</td>
<td>0.67335222</td>
</tr>
<tr>
<td>30</td>
<td>-0.64691452</td>
<td>-0.04236979</td>
<td>-0.60454473</td>
</tr>
<tr>
<td>31</td>
<td>1.24688098</td>
<td>0.66604978</td>
<td>0.58083120</td>
</tr>
<tr>
<td>32</td>
<td>-1.16309887</td>
<td>-0.01790917</td>
<td>-1.14518970</td>
</tr>
<tr>
<td>33</td>
<td>-0.44351500</td>
<td>0.02764644</td>
<td>-0.47116144</td>
</tr>
<tr>
<td>34</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>35</td>
<td>-0.22940279</td>
<td>0.25854553</td>
<td>-0.48794832</td>
</tr>
<tr>
<td>36</td>
<td>-1.53546898</td>
<td>-0.12111873</td>
<td>-1.41435025</td>
</tr>
<tr>
<td>37</td>
<td>0.43523466</td>
<td>0.21835853</td>
<td>0.21687613</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>0.78466215</td>
<td>0.24555454</td>
<td>0.53910760</td>
</tr>
<tr>
<td>39</td>
<td>-0.75224082</td>
<td>0.23421648</td>
<td>-0.98645730</td>
</tr>
<tr>
<td>40</td>
<td>0.10244933</td>
<td>0.23311256</td>
<td>-0.13066323</td>
</tr>
<tr>
<td>41</td>
<td>0.00103493</td>
<td>-0.02779707</td>
<td>0.02883200</td>
</tr>
<tr>
<td>42</td>
<td>0.79467331</td>
<td>0.15691900</td>
<td>0.63775432</td>
</tr>
<tr>
<td>43</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>-0.02323271</td>
<td>-0.01953757</td>
<td>-0.00369513</td>
</tr>
<tr>
<td>45</td>
<td>0.00000000</td>
<td>0.06348597</td>
<td>-0.06348597</td>
</tr>
<tr>
<td>46</td>
<td>0.09255788</td>
<td>0.29974932</td>
<td>-0.20719144</td>
</tr>
<tr>
<td>47</td>
<td>0.78584557</td>
<td>0.10193794</td>
<td>0.68390763</td>
</tr>
<tr>
<td>48</td>
<td>-2.80303071</td>
<td>-0.38749776</td>
<td>-2.41553294</td>
</tr>
<tr>
<td>49</td>
<td>0.08478226</td>
<td>0.18336006</td>
<td>-0.09877800</td>
</tr>
<tr>
<td>50</td>
<td>-0.39946705</td>
<td>-0.58695392</td>
<td>0.18748687</td>
</tr>
<tr>
<td>51</td>
<td>0.84116466</td>
<td>0.00050886</td>
<td>0.84065581</td>
</tr>
<tr>
<td>52</td>
<td>-0.16276746</td>
<td>0.05938802</td>
<td>-0.22215548</td>
</tr>
<tr>
<td>53</td>
<td>0.14841175</td>
<td>-0.26193768</td>
<td>0.41034943</td>
</tr>
<tr>
<td>54</td>
<td>-0.57302412</td>
<td>-0.25599395</td>
<td>-0.31703017</td>
</tr>
<tr>
<td>55</td>
<td>0.16034610</td>
<td>0.01087453</td>
<td>0.14947158</td>
</tr>
<tr>
<td>56</td>
<td>-0.20365214</td>
<td>0.11274293</td>
<td>-0.31639507</td>
</tr>
<tr>
<td>57</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0.05498285</td>
<td>-0.10633300</td>
<td>0.16131585</td>
</tr>
<tr>
<td>59</td>
<td>0.84024609</td>
<td>-0.03586008</td>
<td>0.87610617</td>
</tr>
<tr>
<td>60</td>
<td>-0.69337687</td>
<td>-0.10299762</td>
<td>-0.59037925</td>
</tr>
<tr>
<td>61</td>
<td>-0.29572218</td>
<td>0.01751450</td>
<td>-0.31323668</td>
</tr>
<tr>
<td>62</td>
<td>-0.26144389</td>
<td>-0.24493493</td>
<td>-0.01650896</td>
</tr>
<tr>
<td>63</td>
<td>0.00065316</td>
<td>-0.01356162</td>
<td>0.01421478</td>
</tr>
<tr>
<td>64</td>
<td>1.01698012</td>
<td>0.56909551</td>
<td>0.44788461</td>
</tr>
<tr>
<td>65</td>
<td>-0.88734657</td>
<td>0.06430420</td>
<td>-0.95165077</td>
</tr>
<tr>
<td>66</td>
<td>-0.21147764</td>
<td>-0.27368007</td>
<td>0.06220242</td>
</tr>
<tr>
<td>67</td>
<td>-0.65366942</td>
<td>-0.30327443</td>
<td>-0.35039499</td>
</tr>
<tr>
<td>68</td>
<td>-0.39452140</td>
<td>-0.11723108</td>
<td>-0.27729032</td>
</tr>
<tr>
<td>69</td>
<td>0.11558870</td>
<td>-0.24035379</td>
<td>0.35594249</td>
</tr>
<tr>
<td>70</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>-0.71186515</td>
<td>-0.10374739</td>
<td>-0.60811776</td>
</tr>
<tr>
<td>72</td>
<td>0.30478238</td>
<td>0.00771797</td>
<td>0.29706440</td>
</tr>
<tr>
<td>73</td>
<td>-1.01180373</td>
<td>0.27225610</td>
<td>-1.28405983</td>
</tr>
<tr>
<td>74</td>
<td>0.09866891</td>
<td>0.05880233</td>
<td>0.03986658</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.42154536</td>
<td>-0.16720002</td>
<td>0.58874538</td>
</tr>
<tr>
<td>76</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>0.30240718</td>
<td>-0.04790844</td>
<td>0.35031562</td>
</tr>
<tr>
<td>78</td>
<td>0.75510530</td>
<td>0.38963844</td>
<td>0.36546685</td>
</tr>
<tr>
<td>79</td>
<td>-0.18820305</td>
<td>0.02705596</td>
<td>-0.21525902</td>
</tr>
<tr>
<td>80</td>
<td>0.26900149</td>
<td>0.08766206</td>
<td>0.18133943</td>
</tr>
<tr>
<td>81</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>-0.44443424</td>
<td>-0.06993247</td>
<td>-0.37450177</td>
</tr>
<tr>
<td>84</td>
<td>0.10631537</td>
<td>0.22407483</td>
<td>-0.11775946</td>
</tr>
<tr>
<td>85</td>
<td>0.22311195</td>
<td>0.21325790</td>
<td>0.00985405</td>
</tr>
<tr>
<td>86</td>
<td>0.51964182</td>
<td>0.21548983</td>
<td>0.30415199</td>
</tr>
<tr>
<td>87</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>-0.55170515</td>
<td>0.12836454</td>
<td>-0.68006968</td>
</tr>
<tr>
<td>89</td>
<td>0.68139258</td>
<td>0.05514928</td>
<td>0.62624330</td>
</tr>
<tr>
<td>90</td>
<td>0.00000000</td>
<td>0.12491484</td>
<td>-0.12491484</td>
</tr>
<tr>
<td>91</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>-0.02200515</td>
<td>-0.17543031</td>
<td>0.15342516</td>
</tr>
<tr>
<td>93</td>
<td>0.77565755</td>
<td>-0.23627243</td>
<td>1.01192998</td>
</tr>
<tr>
<td>94</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>-0.09584974</td>
<td>0.02289758</td>
<td>-0.11874732</td>
</tr>
<tr>
<td>96</td>
<td>0.37241352</td>
<td>-0.10764893</td>
<td>0.48006244</td>
</tr>
<tr>
<td>97</td>
<td>0.16951897</td>
<td>-0.41488589</td>
<td>0.58440486</td>
</tr>
<tr>
<td>98</td>
<td>-0.32154432</td>
<td>-0.19034256</td>
<td>-0.13120176</td>
</tr>
<tr>
<td>99</td>
<td>0.13352506</td>
<td>-0.09232278</td>
<td>0.22584783</td>
</tr>
<tr>
<td>100</td>
<td>0.18821544</td>
<td>0.11081337</td>
<td>0.07740207</td>
</tr>
<tr>
<td>101</td>
<td>0.52479943</td>
<td>-0.03387845</td>
<td>0.55867788</td>
</tr>
<tr>
<td>102</td>
<td>-0.39366757</td>
<td>0.13961934</td>
<td>-0.53328691</td>
</tr>
<tr>
<td>103</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>1.32509990</td>
<td>-0.03406125</td>
<td>1.35916115</td>
</tr>
<tr>
<td>105</td>
<td>0.31584752</td>
<td>-0.10021098</td>
<td>0.41605850</td>
</tr>
<tr>
<td>106</td>
<td>-0.22649963</td>
<td>-0.16760512</td>
<td>-0.05889450</td>
</tr>
<tr>
<td>107</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>0.14603820</td>
<td>0.19260020</td>
<td>-0.04656200</td>
</tr>
<tr>
<td>109</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>112 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.67770833</td>
<td>0.62911179</td>
<td>0.04859654</td>
</tr>
<tr>
<td>114</td>
<td>0.15362265</td>
<td>0.61226356</td>
<td>-0.45864092</td>
</tr>
<tr>
<td>115 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>0.16657259</td>
<td>0.38877540</td>
<td>-0.22220282</td>
</tr>
<tr>
<td>118</td>
<td>0.03027705</td>
<td>0.09336100</td>
<td>-0.06308395</td>
</tr>
<tr>
<td>119</td>
<td>0.01660030</td>
<td>-0.07290519</td>
<td>0.08950549</td>
</tr>
<tr>
<td>120</td>
<td>0.52876387</td>
<td>0.40610619</td>
<td>0.12265768</td>
</tr>
<tr>
<td>121</td>
<td>-0.04164638</td>
<td>-0.14659526</td>
<td>0.10494888</td>
</tr>
<tr>
<td>122 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>-0.68157686</td>
<td>0.08039565</td>
<td>-0.76197251</td>
</tr>
<tr>
<td>124</td>
<td>0.18532442</td>
<td>0.26283722</td>
<td>-0.07751280</td>
</tr>
<tr>
<td>125 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>0.18288601</td>
<td>-0.02006019</td>
<td>0.20294620</td>
</tr>
<tr>
<td>127</td>
<td>-0.03217497</td>
<td>0.03246105</td>
<td>-0.06463602</td>
</tr>
<tr>
<td>128 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>-0.07415967</td>
<td>-0.35173919</td>
<td>0.27757952</td>
</tr>
<tr>
<td>130 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>0.57286244</td>
<td>-0.39114646</td>
<td>0.96400889</td>
</tr>
</tbody>
</table>

* Observation was not used in this analysis

Sum of Residuals	-0.0000000
Sum of Squared Residuals	30.83893600
Sum of Squared Residuals - Error SS	-0.0000000
First Order Autocorrelation	-0.12784121
Durbin-Watson D	2.22389017
The Mixed Procedure

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
</tr>
<tr>
<td>Covariance Structure</td>
</tr>
<tr>
<td>Subject Effect</td>
</tr>
<tr>
<td>Estimation Method</td>
</tr>
<tr>
<td>Residual Variance Method</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>pkdid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance Parameters</td>
</tr>
<tr>
<td>Columns in X</td>
</tr>
<tr>
<td>Columns in Z Per Subject</td>
</tr>
<tr>
<td>Subjects</td>
</tr>
<tr>
<td>Max Obs Per Subject</td>
</tr>
<tr>
<td>Observations Used</td>
</tr>
<tr>
<td>Observations Not Used</td>
</tr>
<tr>
<td>Total Observations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Convergence criteria met.

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>pkdid</td>
<td>508.25</td>
</tr>
<tr>
<td>visc</td>
<td>pkdid</td>
<td>2.6471</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>107.48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fit Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
</tr>
<tr>
<td>AIC (smaller is better)</td>
</tr>
<tr>
<td>AICC (smaller is better)</td>
</tr>
<tr>
<td>BIC (smaller is better)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution for Fixed Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>visc</td>
</tr>
</tbody>
</table>
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | DF | t Value | Pr > |t| |
|-----------|------------------------|----------|---------|----|---------|------|---|
| Intercept | 200922 | -6.0475 | 5.7868 | 235| -1.05 | 0.2971 |
| visc | 200922 | -0.1094 | 1.5317 | 235| -0.07 | 0.9431 |
| Intercept | 201800 | -4.9679 | 5.8476 | 235| -0.85 | 0.3964 |
| visc | 201800 | 0.02658 | 1.5265 | 235| 0.02 | 0.9861 |
| Intercept | 201877 | -6.7385 | 5.8311 | 235| -1.16 | 0.2490 |
| visc | 201877 | -0.3978 | 1.5270 | 235| -0.26 | 0.7947 |
| Intercept | 203328 | -11.9428 | 5.8897 | 235| -2.03 | 0.0437 |
| visc | 203328 | 0.08468 | 1.5213 | 235| 0.06 | 0.9557 |
| Intercept | 204555 | 2.8420 | 5.8353 | 235| 0.49 | 0.6267 |
| visc | 204555 | -0.05198 | 1.5246 | 235| -0.03 | 0.9728 |
| Intercept | 205758 | -11.9026 | 5.8367 | 235| -2.04 | 0.0425 |
| visc | 205758 | -0.2255 | 1.5218 | 235| -0.15 | 0.8823 |
| Intercept | 206816 | 0.7140 | 5.8266 | 235| 0.12 | 0.9026 |
| visc | 206816 | 0.1499 | 1.5296 | 235| 0.10 | 0.9220 |
| Intercept | 208280 | 0.9011 | 5.8328 | 235| 0.15 | 0.8774 |
| visc | 208280 | 0.5644 | 1.5280 | 235| 0.37 | 0.7122 |
| Intercept | 208324 | 41.4385 | 5.8283 | 235| 7.11 | <.0001 |
| visc | 208324 | 1.1510 | 1.5280 | 235| 0.75 | 0.4520 |
| Intercept | 209281 | 17.8187 | 5.8367 | 235| 3.05 | 0.0025 |
| visc | 209281 | 0.06243 | 1.5325 | 235| 0.04 | 0.9675 |
| Intercept | 213454 | 14.3513 | 5.8599 | 235| 2.45 | 0.0151 |
| visc | 213454 | 0.5526 | 1.5192 | 235| 0.36 | 0.7164 |
| Intercept | 214376 | 4.7091 | 5.8331 | 235| 0.81 | 0.4203 |
| visc | 214376 | -0.1402 | 1.5299 | 235| -0.09 | 0.9271 |
| Intercept | 215052 | 12.6025 | 6.4387 | 235| 1.96 | 0.0515 |
| visc | 215052 | 0.1997 | 1.5132 | 235| 0.13 | 0.8951 |
| Intercept | 216086 | -14.9923 | 5.8354 | 235| -2.41 | 0.0165 |
| visc | 216086 | -0.9344 | 1.5295 | 235| -0.61 | 0.5418 |
| Intercept | 220068 | -32.6156 | 5.8473 | 235| -5.58 | <.0001 |
| visc | 220068 | -0.5759 | 1.5233 | 235| -0.38 | 0.7057 |
| Intercept | 223343 | -1.2435 | 5.8413 | 235| -0.21 | 0.8316 |
| visc | 223343 | -0.2199 | 1.5220 | 235| -0.14 | 0.8852 |
| Intercept | 223534 | 12.2549 | 6.2776 | 235| 1.95 | 0.0521 |
| visc | 223534 | 0.1047 | 1.5834 | 235| 0.07 | 0.9473 |
| Intercept | 223635 | 73.3910 | 5.9185 | 235| 12.40 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|---------|------|---|
| visc | 223635 | 0.8189 | 1.4997 | 235| 0.55 | 0.5856 |
| Intercept | 224502 | 8.1608 | 5.7875 | 235| 1.41 | 0.1598 |
| visc | 224502 | -0.2182 | 1.5275 | 235| -0.14 | 0.8865 |
| Intercept | 226640 | -3.3779 | 5.8320 | 235| -0.58 | 0.5630 |
| visc | 226640 | 0.1239 | 1.5273 | 235| 0.08 | 0.9354 |
| Intercept | 229428 | 12.3837 | 5.8251 | 235| 2.13 | 0.0346 |
| visc | 229428 | -0.6848 | 1.5301 | 235| -0.45 | 0.6549 |
| Intercept | 229733 | -17.0435 | 5.8442 | 235| -2.92 | 0.0039 |
| visc | 229733 | -0.3965 | 1.5146 | 235| -0.26 | 0.7937 |
| Intercept | 232174 | 14.3338 | 6.3128 | 235| 2.27 | 0.0241 |
| visc | 232174 | 0.5059 | 1.5758 | 235| 0.32 | 0.7484 |
| Intercept | 234053 | 13.7783 | 5.8212 | 235| 2.37 | 0.0187 |
| visc | 234053 | 0.08323 | 1.5297 | 235| 0.05 | 0.9567 |
| Intercept | 234650 | -7.6621 | 5.8086 | 235| -1.32 | 0.1884 |
| visc | 234650 | 0.3768 | 1.5291 | 235| 0.25 | 0.8056 |
| Intercept | 234795 | 30.9234 | 7.5025 | 235| 4.12 | <.0001 |
| visc | 234795 | -0.3889 | 1.5368 | 235| -0.25 | 0.8004 |
| Intercept | 235752 | 12.3648 | 5.8855 | 235| 2.10 | 0.0367 |
| visc | 235752 | 0.05376 | 1.5342 | 235| 0.04 | 0.9721 |
| Intercept | 236202 | -27.2088 | 5.8337 | 235| -4.66 | <.0001 |
| visc | 236202 | -0.1421 | 1.5223 | 235| -0.09 | 0.9257 |
| Intercept | 237192 | 4.2641 | 5.8435 | 235| 0.73 | 0.4663 |
| visc | 237192 | 0.7701 | 1.5225 | 235| 0.51 | 0.6135 |
| Intercept | 239960 | -12.1890 | 5.8656 | 235| -2.08 | 0.0388 |
| visc | 239960 | -0.6469 | 1.5140 | 235| -0.43 | 0.6696 |
| Intercept | 241501 | 1.7368 | 5.9359 | 235| 0.29 | 0.7701 |
| visc | 241501 | 1.2469 | 1.4769 | 235| 0.84 | 0.3994 |
| Intercept | 242715 | 13.8159 | 5.8600 | 235| 2.36 | 0.0192 |
| visc | 242715 | -1.1631 | 1.5219 | 235| -0.76 | 0.4455 |
| Intercept | 243560 | 11.1695 | 5.8399 | 235| 1.91 | 0.0570 |
| visc | 243560 | -0.4435 | 1.5261 | 235| -0.29 | 0.7716 |
| Intercept | 243738 | -12.9280 | 5.8223 | 235| -2.22 | 0.0273 |
| visc | 243738 | -0.4577 | 1.5297 | 235| -0.30 | 0.7650 |
| Intercept | 244111 | 33.5006 | 5.8800 | 235| 5.70 | <.0001 |
| visc | 244111 | -0.2294 | 1.5081 | 235| -0.15 | 0.8792 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|-----|---------|------|------|
| Intercept | 244831 | 61.4392 | 5.8568 | 235 | 10.49 | <.0001 |
| visc | 244831 | -1.5355 | 1.5310 | 235 | -1.00 | 0.3166 |
| Intercept | 245990 | 37.0284 | 5.8713 | 235 | 6.31 | <.0001 |
| visc | 245990 | 0.4352 | 1.5014 | 235 | 0.29 | 0.7722 |
| Intercept | 246620 | 17.9268 | 5.8718 | 235 | 3.05 | 0.0025 |
| visc | 246620 | 0.7847 | 1.5218 | 235 | 0.52 | 0.6066 |
| Intercept | 247880 | 18.0823 | 5.8799 | 235 | 3.08 | 0.0024 |
| visc | 247880 | -0.7522 | 1.5087 | 235 | -0.50 | 0.6185 |
| Intercept | 248712 | -15.6888 | 5.8778 | 235 | -2.67 | 0.0081 |
| visc | 248712 | 0.1024 | 1.5215 | 235 | 0.07 | 0.9464 |
| Intercept | 250286 | -22.3067 | 5.8636 | 235 | -3.80 | 0.0002 |
| visc | 250286 | 0.001035 | 1.5235 | 235 | 0.00 | 0.9995 |
| Intercept | 255765 | 5.1880 | 5.8314 | 235 | 0.89 | 0.3746 |
| visc | 255765 | 0.7947 | 1.5282 | 235 | 0.52 | 0.6035 |
| Intercept | 256171 | -8.0270 | 5.7758 | 235 | -1.39 | 0.1659 |
| visc | 256171 | -0.03103 | 1.5366 | 235 | -0.02 | 0.9839 |
| Intercept | 258950 | -15.3260 | 7.2558 | 235 | -2.11 | 0.0357 |
| visc | 258950 | -0.02323 | 1.6155 | 235 | -0.01 | 0.9885 |
| Intercept | 259940 | 22.8925 | 9.5792 | 235 | 2.39 | 0.0176 |
| visc | 259940 | 0 | 1.6270 | 235 | 0.00 | 1.0000 |
| Intercept | 263617 | -6.1235 | 5.8456 | 235 | -1.05 | 0.2959 |
| visc | 263617 | 0.09256 | 1.5264 | 235 | 0.06 | 0.9517 |
| Intercept | 264225 | 57.4979 | 5.8476 | 235 | 9.83 | <.0001 |
| visc | 264225 | 0.7858 | 1.5206 | 235 | 0.52 | 0.6058 |
| Intercept | 264348 | 88.0580 | 5.8203 | 235 | 15.13 | <.0001 |
| visc | 264348 | -2.8030 | 1.5286 | 235 | -1.83 | 0.0680 |
| Intercept | 265171 | 16.1658 | 5.8402 | 235 | 2.77 | 0.0061 |
| visc | 265171 | 0.08478 | 1.5260 | 235 | 0.06 | 0.9557 |
| Intercept | 268455 | -19.4019 | 5.8770 | 235 | -3.30 | 0.0011 |
| visc | 268455 | -0.3995 | 1.5222 | 235 | -0.26 | 0.7932 |
| Intercept | 271043 | 38.7552 | 5.8454 | 235 | 6.63 | <.0001 |
| visc | 271043 | 0.8412 | 1.5051 | 235 | 0.56 | 0.5768 |
| Intercept | 271460 | -1.3058 | 5.8261 | 235 | -0.22 | 0.8228 |
| visc | 271460 | -0.1628 | 1.5273 | 235 | -0.11 | 0.9152 |
| Intercept | 271662 | 0.5242 | 7.2505 | 235 | 0.07 | 0.9424 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|-------|
| visc | 271662 | 0.1484 | 1.6173 | 235 | 0.09 | 0.9270 |
| Intercept | 271684 | 49.0311 | 5.8670 | 235 | 8.36 | <.0001 |
| visc | 271684 | -0.5730 | 1.5202 | 235 | -0.38 | 0.7066 |
| Intercept | 273214 | 5.3112 | 5.7733 | 235 | 0.92 | 0.3585 |
| visc | 273214 | 0.1603 | 1.5371 | 235 | 0.10 | 0.9170 |
| Intercept | 273225 | -10.4263 | 7.3637 | 235 | -1.42 | 0.1581 |
| visc | 273225 | -0.2037 | 1.5809 | 235 | -0.13 | 0.8976 |
| Intercept | 277490 | 16.4729 | 5.8505 | 235 | 2.82 | 0.0053 |
| visc | 277490 | -0.8982 | 1.5217 | 235 | -0.59 | 0.5556 |
| Intercept | 281000 | 15.1206 | 5.8157 | 235 | 2.60 | 0.0099 |
| visc | 281000 | 0.05498 | 1.5290 | 235 | 0.04 | 0.9713 |
| Intercept | 281977 | 0.1460 | 5.8417 | 235 | 0.03 | 0.9801 |
| visc | 281977 | -0.8402 | 1.5254 | 235 | -0.55 | 0.5823 |
| Intercept | 283722 | 44.2205 | 5.8189 | 235 | 7.60 | <.0001 |
| visc | 283722 | -0.6934 | 1.5247 | 235 | -0.45 | 0.6497 |
| Intercept | 283935 | -17.1939 | 6.3025 | 235 | -2.73 | 0.0069 |
| visc | 283935 | -0.2957 | 1.5768 | 235 | -0.19 | 0.8514 |
| Intercept | 285601 | -3.7377 | 5.8486 | 235 | -0.64 | 0.5234 |
| visc | 285601 | -0.2614 | 1.5256 | 235 | -0.17 | 0.8641 |
| Intercept | 286095 | 7.5609 | 5.8342 | 235 | 1.30 | 0.1963 |
| visc | 286095 | 0.000653 | 1.5259 | 235 | 0.00 | 0.9997 |
| Intercept | 290336 | 26.7934 | 5.8773 | 235 | 4.56 | <.0001 |
| visc | 290336 | 1.0170 | 1.5214 | 235 | 0.67 | 0.5045 |
| Intercept | 292362 | -16.4076 | 5.9085 | 235 | -2.78 | 0.0059 |
| visc | 292362 | -0.8873 | 1.5163 | 235 | -0.59 | 0.5590 |
| Intercept | 293317 | -20.0057 | 5.8099 | 235 | -3.44 | 0.0007 |
| visc | 293317 | -0.2115 | 1.5206 | 235 | -0.14 | 0.8895 |
| Intercept | 293598 | 34.2377 | 6.2931 | 235 | -5.44 | <.0001 |
| visc | 293598 | -0.6537 | 1.5819 | 235 | -0.41 | 0.6798 |
| Intercept | 294105 | -23.8736 | 6.4190 | 235 | -3.72 | 0.0002 |
| visc | 294105 | -0.3945 | 1.5294 | 235 | -0.26 | 0.7967 |
| Intercept | 294511 | 44.2341 | 5.8563 | 235 | 7.55 | <.0001 |
| visc | 294511 | 0.1156 | 1.5234 | 235 | 0.08 | 0.9396 |
| Intercept | 295106 | 18.5181 | 5.8530 | 235 | 3.16 | 0.0018 |
| visc | 295106 | 0.06591 | 1.5164 | 235 | 0.04 | 0.9654 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|---------|-----------------------|----------|--------------|-----|---------|------|---|
| Intercept | 295940 | -10.3429 | 5.8202 | 235 | -1.78 | 0.0768 |
| visc | 295940 | -0.7119 | 1.5230 | 235 | -0.47 | 0.6406 |
| Intercept | 298515 | -22.8923 | 5.8212 | 235 | -3.93 | 0.0001 |
| visc | 298515 | 0.3048 | 1.5277 | 235 | 0.20 | 0.8420 |
| Intercept | 299663 | -16.3977 | 5.8706 | 235 | -2.79 | 0.0056 |
| visc | 299663 | -1.0118 | 1.5128 | 235 | -0.67 | 0.5043 |
| Intercept | 300641 | -7.0306 | 5.8235 | 235 | -1.21 | 0.2285 |
| visc | 300641 | 0.09867 | 1.5265 | 235 | 0.06 | 0.9485 |
| Intercept | 300696 | -22.4713 | 5.8372 | 235 | -3.85 | 0.0002 |
| visc | 300696 | 0.4215 | 1.5247 | 235 | 0.28 | 0.7824 |
| Intercept | 301157 | -28.6612 | 5.8266 | 235 | -4.92 | <.0001 |
| visc | 301157 | 0.3024 | 1.5276 | 235 | 0.20 | 0.8432 |
| Intercept | 301372 | -4.5728 | 5.8170 | 235 | -0.79 | 0.4326 |
| visc | 301372 | 0.7551 | 1.5307 | 235 | 0.49 | 0.6223 |
| Intercept | 303868 | 15.9180 | 5.8474 | 235 | 2.72 | 0.0070 |
| visc | 303868 | -0.1882 | 1.5216 | 235 | -0.12 | 0.9017 |
| Intercept | 304860 | -16.5444 | 5.8199 | 235 | -2.84 | 0.0049 |
| visc | 304860 | 0.2690 | 1.5287 | 235 | 0.18 | 0.8605 |
| Intercept | 306546 | -18.0535 | 5.8462 | 235 | -3.09 | 0.0023 |
| visc | 306546 | 0.1891 | 1.5247 | 235 | 0.12 | 0.9014 |
| Intercept | 312317 | 25.6267 | 5.8148 | 235 | 4.41 | <.0001 |
| visc | 312317 | -0.5415 | 1.5315 | 235 | -0.35 | 0.7240 |
| Intercept | 313195 | -0.6581 | 5.8461 | 235 | -0.11 | 0.9105 |
| visc | 313195 | -0.4444 | 1.5219 | 235 | -0.29 | 0.7705 |
| Intercept | 313307 | -17.0098 | 5.8287 | 235 | -2.92 | 0.0039 |
| visc | 313307 | 0.1063 | 1.5274 | 235 | 0.07 | 0.9446 |
| Intercept | 313893 | -4.1483 | 5.8271 | 235 | -0.71 | 0.4772 |
| visc | 313893 | 0.2231 | 1.5291 | 235 | 0.15 | 0.8841 |
| Intercept | 316110 | 1.3923 | 5.8283 | 235 | 0.24 | 0.8114 |
| visc | 316110 | 0.5196 | 1.5287 | 235 | 0.34 | 0.7342 |
| Intercept | 318562 | -10.8196 | 5.8212 | 235 | -1.86 | 0.0643 |
| visc | 318562 | -0.03651 | 1.5331 | 235 | -0.02 | 0.9810 |
| Intercept | 320182 | -7.0751 | 5.8471 | 235 | -1.21 | 0.2275 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|---------|-------|
| | | | | | | |
| visc | 320182 | -0.5517 | 1.5238 | 235| -0.36 | 0.7176|
| Intercept | 320957 | 10.7324 | 5.8242 | 235| 1.84 | 0.0666|
| visc | 320957 | 0.6814 | 1.5277 | 235| 0.45 | 0.6560|
| Intercept | 321611 | -28.6912 | 9.5792 | 235| -3.00 | 0.0030|
| visc | 321611 | 0 | 1.6270 | 235| 0.00 | 1.0000|
| Intercept | 323837 | 0.6814 | 1.5277 | 235| 0.45 | 0.6560|
| Intercept | 323837 | -27.1775 | 5.8213 | 235| -4.67 | <.0001|
| visc | 325290 | -0.02201 | 1.5278 | 235| -0.01 | 0.9885|
| Intercept | 327055 | -5.6136 | 5.8121 | 235| -0.97 | 0.3351|
| visc | 327055 | 0.7757 | 1.5319 | 235| 0.51 | 0.6131|
| Intercept | 327325 | -9.0526 | 5.8429 | 235| -1.55 | 0.1226|
| visc | 327325 | 0.4323 | 1.5268 | 235| 0.28 | 0.7773|
| Intercept | 327933 | -18.4197 | 5.8257 | 235| -3.16 | 0.0018|
| visc | 327933 | -0.09585 | 1.5278 | 235| -0.06 | 0.9500|
| Intercept | 331318 | 7.0802 | 5.8337 | 235| 1.21 | 0.2261|
| visc | 331318 | 0.3724 | 1.5276 | 235| 0.24 | 0.8076|
| Intercept | 333524 | -26.1140 | 5.8281 | 235| -4.48 | <.0001|
| visc | 333524 | 0.1695 | 1.5275 | 235| 0.11 | 0.9117|
| Intercept | 334672 | -8.8319 | 5.8755 | 235| -1.50 | 0.1341|
| visc | 334672 | -0.3215 | 1.5077 | 235| -0.21 | 0.8313|
| Intercept | 336167 | 4.0129 | 5.7590 | 235| 0.70 | 0.4866|
| visc | 336167 | 0.1335 | 1.5465 | 235| 0.09 | 0.9313|
| Intercept | 336843 | -12.1319 | 5.8287 | 235| -2.08 | 0.0385|
| visc | 336843 | 0.1882 | 1.5274 | 235| 0.12 | 0.9020|
| Intercept | 337315 | 11.0303 | 5.8229 | 235| 1.89 | 0.0594|
| visc | 337315 | 0.5248 | 1.5288 | 235| 0.34 | 0.7317|
| Intercept | 342131 | 1.2054 | 5.8340 | 235| 0.21 | 0.8365|
| visc | 342131 | -0.3937 | 1.5234 | 235| -0.26 | 0.7963|
| Intercept | 343097 | -30.1102 | 5.8355 | 235| -5.16 | <.0001|
| visc | 343097 | -0.6349 | 1.5262 | 235| -0.42 | 0.6778|
| Intercept | 343233 | 21.1005 | 5.8161 | 235| 3.63 | 0.0004|
| visc | 343233 | 1.3251 | 1.5325 | 235| 0.86 | 0.3881|
| Intercept | 354494 | -10.7608 | 6.5425 | 235| -1.64 | 0.1014|
| visc | 354494 | 0.3158 | 1.5307 | 235| 0.21 | 0.8367|
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|---------|------|-----|
| Intercept | 358230 | -19.5687 | 5.8347 | 235 | -3.35 | 0.0009 |
| visc | 358230 | -0.2265 | 1.5288 | 235 | -0.15 | 0.8823 |
| Intercept | 359308 | 4.1433 | 5.8352 | 235 | 0.71 | 0.4784 |
| visc | 359308 | 0.1808 | 1.5264 | 235 | 0.12 | 0.9058 |
| Intercept | 364664 | -13.0826 | 5.8292 | 235 | -2.24 | 0.0257 |
| visc | 364664 | 0.1460 | 1.5261 | 235 | 0.10 | 0.9238 |
| Intercept | 367836 | -23.9513 | 5.8097 | 235 | -4.12 | <.0001 |
| visc | 367836 | -0.7090 | 1.5286 | 235 | -0.46 | 0.6432 |
| Intercept | 368973 | 2.0594 | 6.2699 | 235 | 0.33 | 0.7429 |
| visc | 368973 | 0.06143 | 1.5264 | 235 | 0.12 | 0.9058 |
| Intercept | 369941 | -2.4963 | 6.3880 | 235 | -0.39 | 0.6963 |
| visc | 369941 | 0.03767 | 1.5332 | 235 | 0.10 | 0.9197 |
| Intercept | 370942 | 7.5146 | 6.2626 | 235 | 1.20 | 0.2314 |
| visc | 370942 | 0.3188 | 1.5860 | 235 | 0.20 | 0.8409 |
| Intercept | 371021 | 0.7394 | 5.8297 | 235 | 0.13 | 0.8992 |
| visc | 371021 | 0.6777 | 1.5271 | 235 | 0.44 | 0.6576 |
| Intercept | 374687 | -4.4796 | 5.8191 | 235 | -0.77 | 0.4422 |
| visc | 374687 | -0.2094 | 1.5312 | 235 | -0.14 | 0.8913 |
| Intercept | 376004 | -32.1270 | 5.8226 | 235 | -5.52 | <.0001 |
| visc | 376004 | -0.2132 | 1.5290 | 235 | -0.14 | 0.8892 |
| Intercept | 376252 | -5.7751 | 5.8140 | 235 | -0.99 | 0.3216 |
| visc | 376252 | 0.1666 | 1.5327 | 235 | 0.11 | 0.9136 |
| Intercept | 380166 | 0.3440 | 5.8075 | 235 | 0.06 | 0.9528 |
| visc | 380166 | 0.03028 | 1.5313 | 235 | 0.02 | 0.9842 |
| Intercept | 380998 | -3.4476 | 5.8291 | 235 | -0.59 | 0.5548 |
| visc | 380998 | 0.01660 | 1.5266 | 235 | 0.01 | 0.9913 |
| Intercept | 383193 | -3.1516 | 5.8253 | 235 | -0.54 | 0.5890 |
| visc | 383193 | 0.5288 | 1.5264 | 235 | 0.35 | 0.7293 |
| Intercept | 383744 | -10.6776 | 5.8568 | 235 | -1.82 | 0.0696 |
| visc | 383744 | -0.04165 | 1.5215 | 235 | -0.03 | 0.9782 |
| Intercept | 385151 | 7.0469 | 6.2678 | 235 | 1.12 | 0.2620 |
| visc | 385151 | 0.09182 | 1.5842 | 235 | 0.06 | 0.9538 |
| Intercept | 386040 | -39.1883 | 5.8594 | 235 | -6.69 | <.0001 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|-----|---------|-------|---|
| visc | 386040 | -0.6816 | 1.5163 | 235 | -0.45 | 0.6535 |
| Interception | 386488 | -15.7972 | 5.8296 | 235 | -2.71 | 0.0072 |
| visc | 386488 | 0.1853 | 1.5290 | 235 | 0.12 | 0.9036 |
| Interception | 386758 | -5.6267 | 5.8461 | 235 | -0.96 | 0.3368 |
| visc | 386758 | 0.3320 | 1.5219 | 235 | 0.22 | 0.8275 |
| Interception | 387658 | -7.2596 | 5.8413 | 235 | -1.24 | 0.2152 |
| visc | 387658 | 0.1829 | 1.5240 | 235 | 0.12 | 0.9046 |
| Interception | 392316 | -6.2026 | 5.8341 | 235 | -1.06 | 0.2888 |
| visc | 392316 | -0.03217 | 1.5250 | 235 | -0.02 | 0.9832 |
| Interception | 393936 | -21.7340 | 5.8308 | 235 | -3.73 | 0.0002 |
| visc | 393936 | 0.2773 | 1.5270 | 235 | 0.18 | 0.8560 |
| Interception | 394588 | -34.2754 | 5.7974 | 235 | -5.91 | <.0001 |
| visc | 394588 | -0.07416 | 1.5355 | 235 | -0.05 | 0.9615 |
| Interception | 397661 | -37.1794 | 5.8290 | 235 | -6.38 | <.0001 |
| visc | 397661 | -0.2142 | 1.5272 | 235 | -0.14 | 0.8886 |
| Interception | 397931 | -13.7865 | 7.5025 | 235 | -1.84 | 0.0674 |
| visc | 397931 | 0.5729 | 1.5368 | 235 | 0.37 | 0.7097 |

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>1</td>
<td>128</td>
<td>16.85</td>
<td><.0001</td>
</tr>
</tbody>
</table>
The MEANS Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>N</th>
<th>Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>Participant/ID Number</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>slope</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>SlopSE</td>
<td>Std Err Pred</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>pccn</td>
<td>PCC/Number</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>dvdate</td>
<td>Visit/Date/#3 (1)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>vis</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>urine24_c</td>
<td>24hr Urine (dL/24hr)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>surice_ca</td>
<td>Serum:Uric Acid (mg/dL) (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>Serum:HDL (mg/dL) (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>albe_ca</td>
<td>Urine:Albumin Excr (mg/24hr) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ecitre_ca</td>
<td>Urine:Citrate Excr (mg/24h) (c)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>esode_cc</td>
<td>Urine:Sodium Excr (mEq/24h) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>xbvdate</td>
<td>Visit/Date</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>cic</td>
<td>Correct Iothalamate Clear # 10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>bsa_c</td>
<td>BSA (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>hdyndyn</td>
<td>Hypertension yes/no/ # 12</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>bmi_c</td>
<td>BMI (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>age</td>
<td>Age of participant</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>MDRD GFR</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrskvs</td>
<td>MR K Vol/Sum Ster</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrrcvs</td>
<td>MR C Vol/Sum Reg</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>visc</td>
<td>Relative Visit</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrctps</td>
<td>Percent MR Cyst Vol</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lmrskvs</td>
<td>Log10 MR K Vol/Sum Ster</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lmrrevs</td>
<td>Log10 MR C Vol/Sum Reg</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>Log10 Urine:Albumin Excr (mg/24hr) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>lcticre_ca</td>
<td>Log10 Urine:Citrate Excr (mg/24h) (c)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>lMDRD_GFR</td>
<td>Log10 MDRD GFR</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lrbf</td>
<td>Log10 Renal Blood Flow Corrected for BSA</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>lrvr</td>
<td>Log10 RVR corrected for BSA</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>lrpf</td>
<td>Log10 Remal Plasma Flow</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>lff</td>
<td>Log10 Filtration Fraction</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>race</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>sex</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>ind1_cic</td>
<td>CIC < or >= 100?</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ind2_cic</td>
<td>CIC < or >= 85?</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>genotype</td>
<td>Gene Type</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Avgsystol</td>
<td>Average Systolic BP over years</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Avgdiaastol</td>
<td>Average Diastolic BP over years</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>sex</td>
</tr>
<tr>
<td>hdyn</td>
</tr>
</tbody>
</table>

Number of observations 131

NOTE: Due to missing values, only 107 observations can be used in this analysis.
The GLM Procedure

Dependent Variable: slope

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12</td>
<td>5.21872992</td>
<td>0.43489416</td>
<td>1.32</td>
<td>0.2194</td>
</tr>
<tr>
<td>Error</td>
<td>94</td>
<td>30.92731392</td>
<td>0.32901398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>106</td>
<td>36.14604385</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coeff Var</th>
<th>Root MSE</th>
<th>slope Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.144379</td>
<td>6385.953</td>
<td>0.573597</td>
<td>0.008982</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>0.76905296</td>
<td>0.76905296</td>
<td>2.34</td>
<td>0.1297</td>
</tr>
<tr>
<td>hdyn</td>
<td>1</td>
<td>0.00001445</td>
<td>0.00001445</td>
<td>0.00</td>
<td>0.9947</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>1.44666915</td>
<td>1.44666915</td>
<td>4.40</td>
<td>0.0387</td>
</tr>
<tr>
<td>lrbf</td>
<td>1</td>
<td>0.60958374</td>
<td>0.60958374</td>
<td>1.85</td>
<td>0.1767</td>
</tr>
<tr>
<td>bmi_c</td>
<td>1</td>
<td>0.08671928</td>
<td>0.08671928</td>
<td>0.26</td>
<td>0.6089</td>
</tr>
<tr>
<td>mrcpts</td>
<td>1</td>
<td>1.27553954</td>
<td>1.27553954</td>
<td>3.88</td>
<td>0.0519</td>
</tr>
<tr>
<td>urine24_c</td>
<td>1</td>
<td>0.26021640</td>
<td>0.26021640</td>
<td>0.79</td>
<td>0.3761</td>
</tr>
<tr>
<td>esode_cc</td>
<td>1</td>
<td>0.18242139</td>
<td>0.18242139</td>
<td>0.55</td>
<td>0.4584</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>1</td>
<td>0.05559735</td>
<td>0.05559735</td>
<td>0.17</td>
<td>0.6820</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>1</td>
<td>0.05432247</td>
<td>0.05432247</td>
<td>0.17</td>
<td>0.6854</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>1</td>
<td>0.16948601</td>
<td>0.16948601</td>
<td>0.52</td>
<td>0.4747</td>
</tr>
<tr>
<td>surice_ca</td>
<td>1</td>
<td>0.29730612</td>
<td>0.29730612</td>
<td>0.90</td>
<td>0.3442</td>
</tr>
</tbody>
</table>

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-----------------|----------|----------------|---------|------|---|
| Intercept | -3.058399397 | 2.14863559 | -1.42 | 0.1579 |
| sex Female | 0.283437311 | 0.18538990 | 1.53 | 0.1297 |
| sex Male | 0.000000000 | . | . | . |
| hdyn N | 0.000958085 | 0.14459358 | 0.01 | 0.9947 |
| hdyn Y | 0.000000000 | . | . | . |
| age | 0.017165831 | 0.00818630 | 2.10 | 0.0387 |
| lrbf | 0.793687651 | 0.58309607 | 1.36 | 0.1767 |
| bmi_c | 0.006961285 | 0.01355935 | 0.51 | 0.6089 |
| mrcpts | -0.009147022 | 0.00464558 | -1.97 | 0.0519 |
| urine24_c | -0.000055403 | 0.00006230 | -0.89 | 0.3761 |
| esode_cc | 0.000693781 | 0.00093173 | 0.74 | 0.4584 |
| lalbe_ca | 0.063359605 | 0.15413193 | 0.41 | 0.6820 |
The GLM Procedure

Dependent Variable: slope

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|------------|-------------|----------------|---------|------|---|
| lpldle_ca | 0.000728757 | 0.00179350 | 0.41 | 0.6854 |
| lphdle_ca | -0.004481665| 0.00624424 | -0.72 | 0.4747 |
| surice_ca | 0.071844207 | 0.07557828 | 0.95 | 0.3442 |

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.10940444</td>
<td>0.14745162</td>
<td>-0.25685606</td>
</tr>
<tr>
<td>2</td>
<td>0.02657697</td>
<td>-0.21557922</td>
<td>0.24215619</td>
</tr>
<tr>
<td>3</td>
<td>-0.39776348</td>
<td>-0.02381638</td>
<td>-0.37394710</td>
</tr>
<tr>
<td>4</td>
<td>0.08467595</td>
<td>-0.03349656</td>
<td>0.11817252</td>
</tr>
<tr>
<td>5</td>
<td>-0.05198054</td>
<td>-0.02431259</td>
<td>-0.02766795</td>
</tr>
<tr>
<td>6</td>
<td>-0.22546946</td>
<td>-0.14452018</td>
<td>-0.08094928</td>
</tr>
<tr>
<td>7</td>
<td>0.14990936</td>
<td>-0.07004953</td>
<td>0.21995888</td>
</tr>
<tr>
<td>8</td>
<td>0.56442283</td>
<td>0.10734479</td>
<td>0.45707804</td>
</tr>
<tr>
<td>9</td>
<td>1.15101839</td>
<td>0.30251988</td>
<td>0.84849851</td>
</tr>
<tr>
<td>10</td>
<td>0.06242914</td>
<td>-0.09132756</td>
<td>0.15375670</td>
</tr>
<tr>
<td>11</td>
<td>0.55257333</td>
<td>0.35564434</td>
<td>0.19692899</td>
</tr>
<tr>
<td>12</td>
<td>-0.14021788</td>
<td>0.09998315</td>
<td>-0.24020103</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-0.93444399</td>
<td>-0.13524855</td>
<td>-0.79919544</td>
</tr>
<tr>
<td>15</td>
<td>-0.57594874</td>
<td>-0.23301979</td>
<td>-0.34292895</td>
</tr>
<tr>
<td>16</td>
<td>-0.21991819</td>
<td>-0.19324552</td>
<td>-0.02667267</td>
</tr>
<tr>
<td>17</td>
<td>0.10471468</td>
<td>-0.05553744</td>
<td>0.16025213</td>
</tr>
<tr>
<td>18</td>
<td>0.81889421</td>
<td>0.02654261</td>
<td>0.79235161</td>
</tr>
<tr>
<td>19</td>
<td>-0.21818547</td>
<td>-0.30710566</td>
<td>0.08892018</td>
</tr>
<tr>
<td>20</td>
<td>0.12385538</td>
<td>-0.16159647</td>
<td>0.28545185</td>
</tr>
<tr>
<td>21</td>
<td>-0.68476281</td>
<td>-0.15459976</td>
<td>-0.53016305</td>
</tr>
<tr>
<td>22</td>
<td>-0.39645105</td>
<td>-0.29438780</td>
<td>-0.10206325</td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.08323145</td>
<td>-0.17027803</td>
<td>0.25350948</td>
</tr>
<tr>
<td>25</td>
<td>0.37680205</td>
<td>-0.11708799</td>
<td>0.49389003</td>
</tr>
<tr>
<td>26</td>
<td>-0.38892916</td>
<td>0.12347525</td>
<td>-0.51240441</td>
</tr>
<tr>
<td>27</td>
<td>0.05375912</td>
<td>-0.09647395</td>
<td>0.15023307</td>
</tr>
<tr>
<td>28</td>
<td>-0.14212104</td>
<td>-0.01678481</td>
<td>-0.12533623</td>
</tr>
<tr>
<td>29</td>
<td>0.77013459</td>
<td>0.09182061</td>
<td>0.67831399</td>
</tr>
<tr>
<td>30</td>
<td>-0.64691452</td>
<td>-0.09493421</td>
<td>-0.55198031</td>
</tr>
<tr>
<td>31</td>
<td>1.24688098</td>
<td>0.59969991</td>
<td>0.64718108</td>
</tr>
<tr>
<td>32</td>
<td>-1.16309887</td>
<td>0.01146992</td>
<td>-1.17456879</td>
</tr>
<tr>
<td>33</td>
<td>-0.44351500</td>
<td>-0.00225831</td>
<td>-0.44125670</td>
</tr>
<tr>
<td>34</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-0.22940279</td>
<td>0.22872802</td>
<td>-0.45813081</td>
</tr>
<tr>
<td>36</td>
<td>-1.53546898</td>
<td>-0.12936048</td>
<td>-1.40610850</td>
</tr>
<tr>
<td>37</td>
<td>0.43523466</td>
<td>0.16988567</td>
<td>0.26534899</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>0.78466215</td>
<td>0.23947642</td>
<td>0.54518573</td>
</tr>
<tr>
<td>39</td>
<td>-0.75224082</td>
<td>0.24209098</td>
<td>-0.99433181</td>
</tr>
<tr>
<td>40</td>
<td>0.10244933</td>
<td>0.29216606</td>
<td>-0.18971673</td>
</tr>
<tr>
<td>41</td>
<td>0.00103493</td>
<td>-0.05734484</td>
<td>0.05837977</td>
</tr>
<tr>
<td>42</td>
<td>0.79467331</td>
<td>0.19298148</td>
<td>0.60169184</td>
</tr>
<tr>
<td>43</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>-0.02323271</td>
<td>-0.06256502</td>
<td>0.03933232</td>
</tr>
<tr>
<td>45</td>
<td>0.00000000</td>
<td>0.06700370</td>
<td>-0.06700370</td>
</tr>
<tr>
<td>46</td>
<td>0.09255788</td>
<td>0.30114784</td>
<td>-0.2085996</td>
</tr>
<tr>
<td>47</td>
<td>0.78584557</td>
<td>0.10799343</td>
<td>0.67785214</td>
</tr>
<tr>
<td>48</td>
<td>-2.80303071</td>
<td>-0.36414997</td>
<td>-2.43888073</td>
</tr>
<tr>
<td>49</td>
<td>0.08478226</td>
<td>0.07720695</td>
<td>0.00757532</td>
</tr>
<tr>
<td>50</td>
<td>-0.39946705</td>
<td>-0.56895871</td>
<td>0.16949166</td>
</tr>
<tr>
<td>51</td>
<td>0.84116466</td>
<td>0.02121188</td>
<td>0.81995278</td>
</tr>
<tr>
<td>52</td>
<td>-0.16276746</td>
<td>0.05887606</td>
<td>-0.22164352</td>
</tr>
<tr>
<td>53</td>
<td>0.14841175</td>
<td>-0.27963499</td>
<td>0.42804674</td>
</tr>
<tr>
<td>54</td>
<td>-0.57302412</td>
<td>-0.23365871</td>
<td>-0.33936541</td>
</tr>
<tr>
<td>55</td>
<td>0.16034610</td>
<td>0.01981033</td>
<td>0.14053577</td>
</tr>
<tr>
<td>56</td>
<td>-0.20365214</td>
<td>0.11097551</td>
<td>-0.31462765</td>
</tr>
<tr>
<td>57</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0.05498285</td>
<td>-0.08606209</td>
<td>0.14104494</td>
</tr>
<tr>
<td>59</td>
<td>0.84024609</td>
<td>-0.09233523</td>
<td>0.93258132</td>
</tr>
<tr>
<td>60</td>
<td>-0.69337687</td>
<td>-0.08518266</td>
<td>-0.60819421</td>
</tr>
<tr>
<td>61</td>
<td>-0.29572218</td>
<td>-0.09403487</td>
<td>-0.20168731</td>
</tr>
<tr>
<td>62</td>
<td>-0.26144389</td>
<td>-0.24146928</td>
<td>-0.01997461</td>
</tr>
<tr>
<td>63</td>
<td>0.00065316</td>
<td>0.00647626</td>
<td>-0.00582310</td>
</tr>
<tr>
<td>64</td>
<td>1.01698012</td>
<td>0.57125530</td>
<td>0.44572482</td>
</tr>
<tr>
<td>65</td>
<td>-0.88734657</td>
<td>0.04407880</td>
<td>-0.93142537</td>
</tr>
<tr>
<td>66</td>
<td>-0.21147764</td>
<td>-0.27968503</td>
<td>0.06820739</td>
</tr>
<tr>
<td>67</td>
<td>-0.65366942</td>
<td>-0.26805754</td>
<td>-0.38561188</td>
</tr>
<tr>
<td>68</td>
<td>-0.39452140</td>
<td>-0.14553685</td>
<td>-0.24898455</td>
</tr>
<tr>
<td>69</td>
<td>0.11558870</td>
<td>-0.26613323</td>
<td>0.38172192</td>
</tr>
<tr>
<td>70</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>-0.71186515</td>
<td>-0.05764000</td>
<td>-0.65422515</td>
</tr>
<tr>
<td>72</td>
<td>0.30478238</td>
<td>-0.04976259</td>
<td>0.35454497</td>
</tr>
<tr>
<td>73</td>
<td>-1.01180373</td>
<td>0.26635359</td>
<td>-1.27815731</td>
</tr>
<tr>
<td>74</td>
<td>0.09866891</td>
<td>0.11950596</td>
<td>-0.02083705</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.42154536</td>
<td>-0.12138280</td>
<td>0.54292816</td>
</tr>
<tr>
<td>76 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>0.30240718</td>
<td>-0.04252037</td>
<td>0.34492755</td>
</tr>
<tr>
<td>78</td>
<td>0.75510530</td>
<td>0.43319188</td>
<td>0.32191342</td>
</tr>
<tr>
<td>79</td>
<td>-0.18820305</td>
<td>-0.02486683</td>
<td>-0.1633623</td>
</tr>
<tr>
<td>80</td>
<td>0.26900149</td>
<td>0.10669470</td>
<td>0.16230679</td>
</tr>
<tr>
<td>81 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>-0.44443424</td>
<td>-0.00784436</td>
<td>-0.43658988</td>
</tr>
<tr>
<td>84</td>
<td>0.10631537</td>
<td>0.24685713</td>
<td>-0.14054176</td>
</tr>
<tr>
<td>85</td>
<td>0.22311195</td>
<td>0.21629389</td>
<td>0.00681806</td>
</tr>
<tr>
<td>86</td>
<td>0.51964182</td>
<td>0.29843042</td>
<td>0.22121139</td>
</tr>
<tr>
<td>87 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>-0.55170515</td>
<td>0.11669593</td>
<td>-0.66840108</td>
</tr>
<tr>
<td>89</td>
<td>0.68139258</td>
<td>0.03508294</td>
<td>0.64630964</td>
</tr>
<tr>
<td>90</td>
<td>0.00000000</td>
<td>0.06603054</td>
<td>-0.06603054</td>
</tr>
<tr>
<td>91 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>-0.02200515</td>
<td>-0.20520203</td>
<td>0.18319688</td>
</tr>
<tr>
<td>93</td>
<td>0.77565755</td>
<td>-0.19672743</td>
<td>0.97238498</td>
</tr>
<tr>
<td>94 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>-0.09584974</td>
<td>0.00895357</td>
<td>-0.10480331</td>
</tr>
<tr>
<td>96</td>
<td>0.37241352</td>
<td>-0.15009447</td>
<td>0.52250798</td>
</tr>
<tr>
<td>97</td>
<td>0.16951897</td>
<td>-0.36942037</td>
<td>0.53893934</td>
</tr>
<tr>
<td>98</td>
<td>-0.32154432</td>
<td>-0.15886139</td>
<td>-0.16268292</td>
</tr>
<tr>
<td>99</td>
<td>0.13352506</td>
<td>-0.09870356</td>
<td>0.23222862</td>
</tr>
<tr>
<td>100</td>
<td>0.18821544</td>
<td>0.07589185</td>
<td>0.11232359</td>
</tr>
<tr>
<td>101</td>
<td>0.52479943</td>
<td>0.000464249</td>
<td>0.52015694</td>
</tr>
<tr>
<td>102</td>
<td>-0.39366757</td>
<td>0.17285003</td>
<td>-0.56651760</td>
</tr>
<tr>
<td>103 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>1.32509990</td>
<td>-0.00384889</td>
<td>1.32894880</td>
</tr>
<tr>
<td>105</td>
<td>0.31584752</td>
<td>-0.09084512</td>
<td>0.40669264</td>
</tr>
<tr>
<td>106</td>
<td>-0.22649963</td>
<td>-0.15146495</td>
<td>-0.07503467</td>
</tr>
<tr>
<td>107 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>0.14603820</td>
<td>0.12850249</td>
<td>0.01753571</td>
</tr>
<tr>
<td>109 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 *</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>112 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.67770833</td>
<td>0.66918697</td>
<td>0.00852135</td>
</tr>
<tr>
<td>114</td>
<td>0.15362265</td>
<td>0.61422266</td>
<td>-0.46060002</td>
</tr>
<tr>
<td>115 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>0.16657259</td>
<td>0.37582769</td>
<td>-0.20925510</td>
</tr>
<tr>
<td>118</td>
<td>0.03027705</td>
<td>0.12558101</td>
<td>-0.09530396</td>
</tr>
<tr>
<td>119</td>
<td>0.01660030</td>
<td>-0.04539061</td>
<td>0.06199091</td>
</tr>
<tr>
<td>120</td>
<td>0.52876387</td>
<td>0.37982185</td>
<td>0.14894202</td>
</tr>
<tr>
<td>121</td>
<td>-0.04164638</td>
<td>-0.17900554</td>
<td>0.13735916</td>
</tr>
<tr>
<td>122 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>-0.68157686</td>
<td>0.13836193</td>
<td>-0.81993879</td>
</tr>
<tr>
<td>124</td>
<td>0.18532442</td>
<td>0.21613861</td>
<td>-0.03081419</td>
</tr>
<tr>
<td>125 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>0.18288601</td>
<td>0.02117926</td>
<td>0.16170676</td>
</tr>
<tr>
<td>127</td>
<td>-0.03217497</td>
<td>0.06369798</td>
<td>-0.09587296</td>
</tr>
<tr>
<td>128 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>-0.07415967</td>
<td>-0.30962966</td>
<td>0.23546999</td>
</tr>
<tr>
<td>130 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>0.57286244</td>
<td>-0.40317877</td>
<td>0.97604121</td>
</tr>
</tbody>
</table>

* Observation was not used in this analysis

<table>
<thead>
<tr>
<th>Sum of Residuals</th>
<th>-0.00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Squared Residuals</td>
<td>30.92731392</td>
</tr>
<tr>
<td>Sum of Squared Residuals - Error SS</td>
<td>-0.00000000</td>
</tr>
<tr>
<td>First Order Autocorrelation</td>
<td>-0.14335018</td>
</tr>
<tr>
<td>Durbin-Watson D</td>
<td>2.25376405</td>
</tr>
</tbody>
</table>
Log10 Kidney Volume

The Mixed Procedure

Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Imrskvs</td>
</tr>
<tr>
<td>Covariance Structure</td>
<td>Variance Components</td>
</tr>
<tr>
<td>Subject Effect</td>
<td>pkdid</td>
</tr>
<tr>
<td>Estimation Method</td>
<td>ML</td>
</tr>
<tr>
<td>Residual Variance Method</td>
<td>Profile</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
<td>Model-Based</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
<td>Containment</td>
</tr>
</tbody>
</table>

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>131</td>
<td>200922 201800 201877 203328 204555 205758 206816 208820 208324 209281 213454 214376 215052 216086 220068 223343 223534 223635 224502 226640 229428 229733 232174 234053 234650 234795 235752 236202 237192 239960 241501 242715 243560 243738 244111 244831 245990 246620 247880 248712 252086 255765 256171 258950 263617 264225 264348 265171 268455 271043 271460 271662 271684 273214 273225 277490 281000 281977 283722 283935 285601 286095 290336 292362 293317 293598 294105 294511 295106 295940 298515 299663 300641 300696 300911 301157 301372 303868 304860 306546 312317 313195 313307 313893 316110 318562 320182 320957 321611 323837 325290 327055 327325 327933 331318 333524 334672 336167 336843 337315 342131 343097 343233 354494 358230 359308 364664 367836 368973 369941 370942 371021 374068 374687 376004 376252 380166 380998 383193 383744 385151 386040 386488 386758 387658 392316 393936 394588 397661 397931</td>
</tr>
</tbody>
</table>

Dimensions

Covariance Parameters	3
Columns in X	2
Columns in Z Per Subject	2
Subjects	131
Max Obs Per Subject	491
Observations Used	4
Observations Not Used	33
Total Observations	524

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>22.00817153</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>-71.89997596</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-309.61169226</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-542.31169447</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-763.42002605</td>
<td>0.17574568</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-963.48371285</td>
<td>0.13286665</td>
</tr>
</tbody>
</table>
The Mixed Procedure

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>-1131.36038660</td>
<td>0.09334271</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-1258.46742112</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-1367.74935015</td>
<td>0.05417481</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1449.84882978</td>
<td>0.03403243</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-1502.32106385</td>
<td>0.01775233</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-1529.69822844</td>
<td>0.00723653</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-1540.63174641</td>
<td>0.00191961</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>-1543.38080085</td>
<td>0.00020584</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>-1543.65137301</td>
<td>0.00000315</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-1543.65526644</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

Convergence criteria met.

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>pkdid</td>
<td>0.05775</td>
</tr>
<tr>
<td>visc</td>
<td>pkdid</td>
<td>0.000217</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>0.000294</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fit Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
</tr>
<tr>
<td>AIC (smaller is better)</td>
</tr>
<tr>
<td>AICC (smaller is better)</td>
</tr>
<tr>
<td>BIC (smaller is better)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution for Fixed Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>visc</td>
</tr>
</tbody>
</table>
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|----|---------|------|---|
| Intercept | 200922 | -0.02673 | 0.02467 | 231 | -1.08 | 0.2799 | |
| Intercept | 201800 | 0.5160 | 0.02492 | 231 | 20.71 | <.0001 | |
| Intercept | 201877 | -0.05669 | 0.02484 | 231 | -2.28 | 0.0234 | |
| Intercept | 203328 | 0.08394 | 0.02505 | 231 | 3.35 | 0.0009 | |
| Intercept | 204555 | 0.1151 | 0.02482 | 231 | 4.64 | <.0001 | |
| Intercept | 205758 | 0.03994 | 0.02478 | 231 | 1.61 | 0.1085 | |
| Intercept | 206816 | -0.01152 | 0.02486 | 231 | -0.46 | 0.6436 | |
| Intercept | 208280 | -0.1565 | 0.02486 | 231 | -6.29 | <.0001 | |
| Intercept | 208324 | -0.04840 | 0.02484 | 231 | -1.95 | 0.0526 | |
| Intercept | 209281 | -0.1566 | 0.02497 | 231 | -6.27 | <.0001 | |
| Intercept | 213454 | -0.3052 | 0.02486 | 231 | -12.27 | <.0001 | |
| Intercept | 214376 | -0.05531 | 0.02490 | 231 | -2.22 | 0.0273 | |
| Intercept | 215052 | -0.2103 | 0.02502 | 231 | -8.40 | <.0001 | |
| Intercept | 216086 | 0.5045 | 0.02491 | 231 | 20.26 | <.0001 | |
| Intercept | 220068 | 0.5601 | 0.02486 | 231 | 22.53 | <.0001 | |
| Intercept | 223343 | 0.08219 | 0.02481 | 231 | 3.31 | 0.0011 | |
| Intercept | 223534 | 0.1343 | 0.02507 | 231 | 5.36 | <.0001 | |
| Intercept | 223635 | -0.09883 | 0.02486 | 231 | -3.98 | <.0001 | |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|-------|----------|
| visc | 223635 | -0.00735 | 0.006161| 233 | -1.19 | 0.2341 |
| Intercept | 224502 | -0.1396 | 0.02461 | 233 | -5.67 | <.0001 |
| visc | 224502 | 0.001627 | 0.006840| 233 | 0.24 | 0.8123 |
| Intercept | 226640 | 0.08752 | 0.02485 | 233 | 3.52 | 0.0005 |
| visc | 226640 | -0.00374 | 0.006860| 233 | -0.55 | 0.5859 |
| Intercept | 229428 | 0.007870 | 0.02486 | 233 | 0.32 | 0.7518 |
| visc | 229428 | -0.02038 | 0.006944| 233 | -2.94 | 0.0037 |
| Intercept | 229733 | 0.1192 | 0.02472 | 233 | 4.82 | <.0001 |
| visc | 229733 | -0.00430 | 0.006500| 233 | -0.66 | 0.5089 |
| Intercept | 232174 | -0.2237 | 0.02523 | 233 | -8.87 | <.0001 |
| visc | 232174 | -0.00256 | 0.008843| 233 | -0.29 | 0.7729 |
| Intercept | 234053 | 0.2531 | 0.02483 | 233 | 10.19 | <.0001 |
| visc | 234053 | 0.02180 | 0.006927| 233 | 3.15 | 0.0019 |
| Intercept | 234650 | -0.00224 | 0.02475 | 233 | -0.09 | 0.9279 |
| visc | 234650 | 0.01610 | 0.006903| 233 | 2.33 | 0.0206 |
| Intercept | 234795 | -0.3401 | 0.02640 | 233 | -12.88 | <.0001 |
| visc | 234795 | 0.000811 | 0.007157| 233 | 0.11 | 0.9098 |
| Intercept | 235752 | -0.08131 | 0.02528 | 233 | -3.22 | 0.0015 |
| visc | 235752 | -0.00001 | 0.007115| 233 | -0.00 | 0.9985 |
| Intercept | 236202 | 0.3863 | 0.02478 | 233 | 15.59 | <.0001 |
| visc | 236202 | -0.00833 | 0.006710| 233 | -1.24 | 0.2157 |
| Intercept | 237192 | 0.2643 | 0.02483 | 233 | 10.64 | <.0001 |
| visc | 237192 | 0.02610 | 0.006721| 233 | 3.88 | 0.0001 |
| Intercept | 239960 | 0.02847 | 0.02481 | 233 | 1.15 | 0.2524 |
| visc | 239960 | -0.00658 | 0.006493| 233 | -1.01 | 0.3122 |
| Intercept | 241501 | -0.3167 | 0.02465 | 233 | -12.85 | <.0001 |
| visc | 241501 | -0.01659 | 0.005688| 233 | -2.92 | 0.0039 |
| Intercept | 242715 | -0.1031 | 0.02491 | 233 | -4.14 | <.0001 |
| visc | 242715 | -0.01876 | 0.006712| 233 | -2.80 | 0.0056 |
| Intercept | 243560 | -0.3463 | 0.02504 | 233 | -13.83 | <.0001 |
| visc | 243560 | -0.00261 | 0.009287| 233 | -0.28 | 0.7787 |
| Intercept | 243738 | 0.2669 | 0.02498 | 233 | 10.69 | <.0001 |
| visc | 243738 | 0.01075 | 0.009324| 233 | 1.15 | 0.2500 |
| Intercept | 244111 | -0.1643 | 0.02480 | 233 | -6.63 | <.0001 |
| visc | 244111 | 0.01913 | 0.006348| 233 | 3.01 | 0.0029 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|-----------------------|-----------|---------|---------|---------|-------|-----|
| Intercept | 244831 | -0.2607 | 0.02503 | 231 | -10.41 | <.0001 |
| Intercept | 245990 | -0.2987 | 0.02467 | 231 | -12.11 | <.0001 |
| Intercept | 246620 | -0.3654 | 0.02497 | 231 | -14.64 | <.0001 |
| Intercept | 247880 | -0.2245 | 0.02480 | 231 | -9.05 | <.0001 |
| Intercept | 245990 | -0.00539 | 0.006960 | 231 | -0.77 | 0.4395 |
| Intercept | 247780 | -0.02124 | 0.006181 | 231 | -3.44 | 0.0007 |
| Intercept | 248712 | -0.00898 | 0.006954 | 231 | -1.29 | 0.1979 |
| Intercept | 249940 | -0.1574 | 0.02486 | 231 | -6.33 | <.0001 |
| Intercept | 250286 | 0.08531 | 0.02508 | 231 | 3.40 | 0.0008 |
| Intercept | 251171 | -0.1350 | 0.02469 | 231 | -5.47 | <.0001 |
| Intercept | 255765 | -0.1574 | 0.02486 | 231 | -6.33 | <.0001 |
| Intercept | 252086 | 0.08531 | 0.02508 | 231 | 3.40 | 0.0008 |
| Intercept | 252086 | -0.00539 | 0.006960 | 231 | -0.77 | 0.4395 |
| Intercept | 253765 | 0.008371 | 0.006887 | 231 | 1.22 | 0.2254 |
| Intercept | 255940 | -0.2146 | 0.02702 | 231 | -7.94 | <.0001 |
| Intercept | 259940 | -0.2084 | 0.02491 | 231 | -8.37 | <.0001 |
| Intercept | 263617 | -0.00190 | 0.007130 | 231 | -0.27 | 0.7904 |
| Intercept | 264225 | -0.03283 | 0.02482 | 231 | -1.32 | 0.1873 |
| Intercept | 264348 | -0.1176 | 0.02481 | 231 | -4.74 | <.0001 |
| Intercept | 265171 | -0.3899 | 0.02487 | 231 | -15.68 | <.0001 |
| Intercept | 268455 | 0.3496 | 0.02500 | 231 | 13.98 | <.0001 |
| Intercept | 271043 | -0.2131 | 0.02484 | 231 | -8.58 | <.0001 |
| Intercept | 271460 | -0.2407 | 0.02482 | 231 | -9.70 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|----|---------|-------|---|
| visc | 271662 | 0.005814 | 0.01277 | 231| 0.46 | 0.6494 |
| Intercept | 271684 | -0.2608 | 0.02492 | 231| -10.47 | <.0001 |
| visc | 271684 | 0.02401 | 0.006665 | 231| 3.60 | 0.0004 |
| Intercept | 273214 | 0.1034 | 0.02468 | 231| 4.19 | <.0001 |
| visc | 273214 | 0.004299 | 0.007145 | 231| 0.60 | 0.5480 |
| Intercept | 273225 | 0.1840 | 0.02597 | 231| 7.08 | <.0001 |
| visc | 273225 | 0.01359 | 0.006920 | 231| 1.96 | 0.0507 |
| Intercept | 277490 | -0.1518 | 0.02497 | 231| -6.08 | <.0001 |
| visc | 277490 | 0.02738 | 0.006915 | 231| 3.96 | 0.0001 |
| Intercept | 281000 | 0.003341 | 0.02479 | 231| 0.13 | 0.8929 |
| visc | 281000 | 0.005426 | 0.006904 | 231| 0.79 | 0.4327 |
| Intercept | 281977 | 0.08993 | 0.02487 | 231| 3.62 | 0.0004 |
| visc | 281977 | 0.01912 | 0.006807 | 231| 2.81 | 0.0054 |
| Intercept | 283722 | 0.03461 | 0.02474 | 231| 1.40 | 0.1631 |
| visc | 283722 | -0.01362 | 0.006774 | 231| -2.01 | 0.0455 |
| Intercept | 283935 | -0.01084 | 0.02516 | 231| -0.43 | 0.6669 |
| visc | 283935 | 0.003812 | 0.008891 | 231| 0.43 | 0.6685 |
| Intercept | 285601 | 0.5115 | 0.02491 | 231| 20.53 | <.0001 |
| visc | 285601 | -0.00366 | 0.006817 | 231| -0.54 | 0.5915 |
| Intercept | 286095 | -0.06651 | 0.02484 | 231| -2.68 | 0.0079 |
| visc | 286095 | -0.00706 | 0.006817 | 231| -1.04 | 0.3016 |
| Intercept | 290336 | -0.1515 | 0.02499 | 231| -6.06 | <.0001 |
| visc | 290336 | -0.01187 | 0.006707 | 231| -1.77 | 0.0781 |
| Intercept | 292362 | 0.2939 | 0.02506 | 231| 11.73 | <.0001 |
| visc | 292362 | 0.02577 | 0.006577 | 231| 3.92 | 0.0001 |
| Intercept | 293317 | 0.4163 | 0.02463 | 231| 16.90 | <.0001 |
| visc | 293317 | 0.01649 | 0.006649 | 231| 2.48 | 0.0139 |
| Intercept | 293598 | 0.4937 | 0.02520 | 231| 19.59 | <.0001 |
| visc | 293598 | -0.00879 | 0.009221 | 231| -0.95 | 0.3414 |
| Intercept | 294105 | 0.03988 | 0.02513 | 231| 1.59 | 0.1139 |
| visc | 294105 | -0.01120 | 0.006898 | 231| -1.62 | 0.1057 |
| Intercept | 294511 | -0.2563 | 0.02491 | 231| -10.29 | <.0001 |
| visc | 294511 | 0.008826 | 0.006752 | 231| 1.31 | 0.1925 |
| Intercept | 295106 | -0.2298 | 0.02479 | 231| -9.27 | <.0001 |
| visc | 295106 | -0.00621 | 0.006552 | 231| -0.95 | 0.3439 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|---------|------|---|
| Intercept | 295940 | 0.2856 | 0.02472 | 231 | 11.56 | <.0001 |
| Visc | 295940 | -0.00221 | 0.006724 | 231 | -0.33 | 0.7431 |
| Intercept | 298515 | 0.2359 | 0.02480 | 231 | 9.51 | <.0001 |
| Visc | 298515 | 0.008885 | 0.006866 | 231 | 1.29 | 0.1969 |
| Intercept | 299663 | -0.3484 | 0.02482 | 231 | -14.04 | <.0001 |
| Visc | 299663 | -0.03660 | 0.006463 | 231 | -5.66 | <.0001 |
| Intercept | 300641 | -0.2071 | 0.02479 | 231 | -8.35 | <.0001 |
| Visc | 300641 | 0.005302 | 0.006829 | 231 | 0.78 | 0.4383 |
| Intercept | 300696 | 0.07763 | 0.02483 | 231 | 3.13 | 0.0020 |
| Visc | 300696 | -0.00379 | 0.006463 | 231 | -0.56 | 0.5771 |
| Intercept | 300911 | 0.1377 | 0.02500 | 231 | 5.51 | <.0001 |
| Visc | 300911 | 0.007269 | 0.006782 | 231 | 0.77 | 0.4408 |
| Intercept | 301157 | 0.2460 | 0.02482 | 231 | 9.91 | <.0001 |
| Visc | 301157 | 0.005070 | 0.006865 | 231 | 0.74 | 0.4610 |
| Intercept | 301372 | 0.01366 | 0.02482 | 231 | 0.55 | 0.5827 |
| Visc | 301372 | 0.02455 | 0.006957 | 231 | 3.53 | 0.0005 |
| Intercept | 303868 | -0.5037 | 0.02484 | 231 | -20.28 | <.0001 |
| Visc | 303868 | 0.002772 | 0.006696 | 231 | 0.41 | 0.6793 |
| Intercept | 304860 | 0.2677 | 0.02481 | 231 | 10.79 | <.0001 |
| Visc | 304860 | 0.002729 | 0.006896 | 231 | 0.40 | 0.6927 |
| Intercept | 306546 | -0.2132 | 0.02488 | 231 | -8.57 | <.0001 |
| Visc | 306546 | 0.002239 | 0.006787 | 231 | 0.33 | 0.7418 |
| Intercept | 312317 | -0.2598 | 0.02483 | 231 | -10.47 | <.0001 |
| Visc | 312317 | 0.01914 | 0.006982 | 231 | 2.74 | 0.0066 |
| Intercept | 313195 | 0.3278 | 0.02483 | 231 | 13.20 | <.0001 |
| Visc | 313195 | 0.005580 | 0.006703 | 231 | 0.83 | 0.4060 |
| Intercept | 313307 | 0.01660 | 0.02483 | 231 | 0.67 | 0.5044 |
| Visc | 313307 | 0.01788 | 0.006859 | 231 | 2.61 | 0.0097 |
| Intercept | 313893 | -0.2384 | 0.02485 | 231 | -9.59 | <.0001 |
| Visc | 313893 | -0.01417 | 0.006914 | 231 | -2.05 | 0.0416 |
| Intercept | 316110 | -0.08164 | 0.02485 | 231 | -3.28 | 0.0012 |
| Visc | 316110 | -0.01169 | 0.006900 | 231 | -1.69 | 0.0916 |
| Intercept | 318562 | -0.3113 | 0.02489 | 231 | -12.51 | <.0001 |
| Visc | 318562 | -0.01489 | 0.007040 | 231 | -2.12 | 0.0355 |
| Intercept | 320182 | 0.1061 | 0.02487 | 231 | 4.27 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|-----------------------|----------|---------|---------|---------|------|-----|
| visc | 320182 | -0.03069 | 0.006760| 231 | -4.54 | <.0001|
| Intercept | 320957 | -0.3876 | 0.02481 | 231 | -15.62 | <.0001|
| visc | 320957 | -0.01232 | 0.006868| 231 | -1.79 | 0.0741|
| Intercept | 321611 | 0.2871 | 0.02702 | 231 | 10.62 | <.0001|
| visc | 321611 | 0 | 0.01473 | 231 | 0.00 | 1.0000|
| Intercept | 323837 | -0.03597 | 0.02492 | 231 | -1.44 | 0.1503|
| visc | 323837 | -0.00223 | 0.006728| 231 | -0.33 | 0.7410|
| Intercept | 325290 | -0.1896 | 0.02480 | 231 | 7.64 | <.0001|
| visc | 325290 | -0.00341 | 0.006993| 231 | -0.49 | 0.6262|
| Intercept | 327325 | -0.08131 | 0.02490 | 231 | -3.27 | 0.0013|
| visc | 327325 | -0.00740 | 0.006851| 231 | -1.08 | 0.2810|
| Intercept | 327933 | -0.1896 | 0.02482 | 231 | -7.64 | <.0001|
| visc | 327933 | 0.006680 | 0.006872| 231 | 0.97 | 0.3320|
| Intercept | 331318 | -0.3577 | 0.02486 | 231 | -14.39 | <.0001|
| visc | 331318 | -0.01072 | 0.006870| 231 | -1.56 | 0.1199|
| Intercept | 333524 | 0.5390 | 0.02483 | 231 | 21.71 | <.0001|
| visc | 333524 | 0.003983 | 0.006862| 231 | 0.58 | 0.5621|
| Intercept | 334672 | 0.2932 | 0.02477 | 231 | 11.84 | <.0001|
| visc | 334672 | -0.00830 | 0.006335| 231 | -1.31 | 0.1913|
| Intercept | 336167 | -0.09955 | 0.02477 | 231 | -4.02 | <.0001|
| visc | 336167 | 0.004283 | 0.007481| 231 | 0.57 | 0.5675|
| Intercept | 336843 | -0.09536 | 0.02483 | 231 | -3.84 | 0.0002|
| visc | 336843 | 0.002510 | 0.006859| 231 | 0.37 | 0.7147|
| Intercept | 337315 | -0.00596 | 0.02483 | 231 | -0.24 | 0.8105|
| visc | 337315 | -0.00237 | 0.006901| 231 | -0.34 | 0.7311|
| Intercept | 342131 | -0.00155 | 0.02480 | 231 | -0.06 | 0.9503|
| visc | 342131 | 0.007208 | 0.006743| 231 | 1.07 | 0.2862|
| Intercept | 343097 | 0.2477 | 0.02485 | 231 | 9.97 | <.0001|
| visc | 343097 | 0.02409 | 0.006828| 231 | 3.53 | 0.0005|
| Intercept | 343233 | 0.1801 | 0.02485 | 231 | 7.25 | <.0001|
| visc | 343233 | 0.01271 | 0.007016| 231 | 1.81 | 0.0713|
| Intercept | 354494 | -0.1472 | 0.02593 | 231 | -5.68 | <.0001|
| visc | 354494 | 0.01430 | 0.007022| 231 | 2.04 | 0.0429|
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|-----|---------|------|----|
| Intercept | 358230 | -0.03013 | 0.02489 | 231 | -1.21 | 0.2273 |
| visc | 358230 | 0.003541 | 0.006908 | 231 | 0.51 | 0.6087 |
| Intercept | 359308 | -0.00306 | 0.02485 | 231 | -0.12 | 0.9021 |
| visc | 359308 | -0.00105 | 0.006832 | 231 | -0.15 | 0.8780 |
| Intercept | 364664 | -0.3714 | 0.02481 | 231 | -14.97 | <.0001 |
| visc | 364664 | -0.01812 | 0.006821 | 231 | -2.66 | 0.0084 |
| Intercept | 367836 | 0.3464 | 0.02475 | 231 | 14.00 | <.0001 |
| visc | 367836 | 0.003541 | 0.006908 | 231 | 0.51 | 0.6087 |
| Intercept | 369308 | -0.00306 | 0.02485 | 231 | -0.12 | 0.9021 |
| visc | 369308 | -0.00105 | 0.006832 | 231 | -0.15 | 0.8780 |
| Intercept | 364664 | -0.3714 | 0.02481 | 231 | -14.97 | <.0001 |
| visc | 364664 | -0.01812 | 0.006821 | 231 | -2.66 | 0.0084 |
| Intercept | 367836 | 0.3464 | 0.02475 | 231 | 14.00 | <.0001 |
| visc | 367836 | 0.003541 | 0.006908 | 231 | 0.51 | 0.6087 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|---------|-------|
| visc | 386040 | 0.009914 | 0.006553 | 231| 1.51 | 0.1317|
| Intercept | 386488 | 0.1109 | 0.02487 | 231| 4.46 | <.0001|
| visc | 386488 | 0.01522 | 0.006912 | 231| 2.20 | 0.0287|
| Intercept | 386758 | 0.2903 | 0.02483 | 231| 11.69 | <.0001|
| visc | 386758 | 0.01011 | 0.006703 | 231| 1.51 | 0.1330|
| Intercept | 387658 | 0.2974 | 0.02484 | 231| 11.97 | <.0001|
| visc | 387658 | -0.00077 | 0.006763 | 231| -0.11 | 0.9095|
| Intercept | 392316 | 0.1647 | 0.02482 | 231| 6.64 | <.0001|
| visc | 392316 | -0.01036 | 0.006789 | 231| -1.53 | 0.1285|
| Intercept | 393936 | 0.06019 | 0.02484 | 231| 2.42 | 0.0161|
| visc | 393936 | 0.000286 | 0.006850 | 231| 0.04 | 0.9667|
| Intercept | 394588 | 0.3816 | 0.02480 | 231| 15.39 | <.0001|
| visc | 394588 | 0.002553 | 0.007104 | 231| 0.36 | 0.7197|
| Intercept | 397661 | 0.3061 | 0.02483 | 231| 12.33 | <.0001|
| visc | 397661 | 0.000208 | 0.006855 | 231| 0.03 | 0.9758|
| Intercept | 397931 | -0.02920 | 0.02640 | 231| -1.11 | 0.2699|
| visc | 397931 | -0.01169 | 0.007157 | 231| -1.63 | 0.1038|

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>1</td>
<td>128</td>
<td>202.10</td>
<td><.0001</td>
</tr>
</tbody>
</table>
The MEANS Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>N Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>Participant/ID Number</td>
<td>0</td>
</tr>
<tr>
<td>slope</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>SlepSE</td>
<td>Std Err Pred</td>
<td>0</td>
</tr>
<tr>
<td>pccn</td>
<td>PCC/Number</td>
<td>0</td>
</tr>
<tr>
<td>dvdate</td>
<td>Visit/Date/#3 (1)</td>
<td>1</td>
</tr>
<tr>
<td>vis</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>urine24_c</td>
<td>24hr Urine (dL/24hr)</td>
<td>1</td>
</tr>
<tr>
<td>surice_ca</td>
<td>Serum:Uric Acid (mg/dL) (c)</td>
<td>0</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>Serum:HDL (mg/dL) (c)</td>
<td>0</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td>17</td>
</tr>
<tr>
<td>albe_ca</td>
<td>Urine:Albumin Excr (mg/24hr) (c)</td>
<td>2</td>
</tr>
<tr>
<td>ecitrca</td>
<td>Urine:Citrate Excr (mg/24h) (c)</td>
<td>5</td>
</tr>
<tr>
<td>esode_cc</td>
<td>Urine:Sodium Excr (mEq/24h) (c)</td>
<td>2</td>
</tr>
<tr>
<td>xhvdte</td>
<td>Visit/Date</td>
<td>0</td>
</tr>
<tr>
<td>cic</td>
<td>Correct Iothalamate Clear/# 10</td>
<td>1</td>
</tr>
<tr>
<td>bsa_c</td>
<td>BSA (c)</td>
<td>0</td>
</tr>
<tr>
<td>hdyn</td>
<td>Hypertension yes/no/# 12</td>
<td>0</td>
</tr>
<tr>
<td>bmi_c</td>
<td>BMI (c)</td>
<td>0</td>
</tr>
<tr>
<td>age</td>
<td>Age of participant</td>
<td>0</td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>MDRD GFR</td>
<td>0</td>
</tr>
<tr>
<td>mrskvs</td>
<td>MR K Vol/Sum Ster</td>
<td>0</td>
</tr>
<tr>
<td>mmrcvs</td>
<td>MR C Vol/Sum Reg</td>
<td>0</td>
</tr>
<tr>
<td>visc</td>
<td>Relative Visit</td>
<td>0</td>
</tr>
<tr>
<td>nrcpts</td>
<td>Percent MR Cyst Vol</td>
<td>0</td>
</tr>
<tr>
<td>lmrskvs</td>
<td>Log10 MR K Vol/Sum Ster</td>
<td>0</td>
</tr>
<tr>
<td>lmrrcvs</td>
<td>Log10 MR C Vol/Sum Reg</td>
<td>0</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>Log10 Urine:Albumin Excr (mg/24hr) (c)</td>
<td>2</td>
</tr>
<tr>
<td>lectrca</td>
<td>Log10 Urine:Citrate Excr (mg/24h) (c)</td>
<td>5</td>
</tr>
<tr>
<td>lMDRD_GFR</td>
<td>Log10 MDRD GFR</td>
<td>0</td>
</tr>
<tr>
<td>lrbf</td>
<td>Log10 Renal Blood Flow Corrected for BSA</td>
<td>8</td>
</tr>
<tr>
<td>lrvr</td>
<td>Log10 RVR corrected for BSA</td>
<td>11</td>
</tr>
<tr>
<td>lrfp</td>
<td>Log10 Remal Plasma Flow</td>
<td>8</td>
</tr>
<tr>
<td>lff</td>
<td>Log10 Filtration Fraction</td>
<td>9</td>
</tr>
<tr>
<td>race</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>sex</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>ind1_cic</td>
<td>CIC < or >= 100?</td>
<td>1</td>
</tr>
<tr>
<td>ind2_cic</td>
<td>CIC < or >= 85?</td>
<td>1</td>
</tr>
<tr>
<td>genotype</td>
<td>Gene Type</td>
<td>0</td>
</tr>
<tr>
<td>Avgsysostol</td>
<td>Average Systolic BP over years</td>
<td>0</td>
</tr>
<tr>
<td>Avgdiastol</td>
<td>Average Diastolic BP over years</td>
<td>0</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>2</td>
<td>Female Male</td>
</tr>
<tr>
<td>hdyn</td>
<td>2</td>
<td>N Y</td>
</tr>
</tbody>
</table>

Number of observations 131

NOTE: Due to missing values, only 106 observations can be used in this analysis.
The GLM Procedure

Dependent Variable: slope

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12</td>
<td>0.00311820</td>
<td>0.00025985</td>
<td>1.85</td>
<td>0.0515</td>
</tr>
<tr>
<td>Error</td>
<td>93</td>
<td>0.01307962</td>
<td>0.00014064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>105</td>
<td>0.01619782</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coef Var</th>
<th>Root MSE</th>
<th>slope Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.192508</td>
<td>-984.7061</td>
<td>0.011859</td>
<td>-0.001204</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>0.00007663</td>
<td>0.00007663</td>
<td>0.54</td>
<td>0.4623</td>
</tr>
<tr>
<td>hdyn</td>
<td>1</td>
<td>0.00016084</td>
<td>0.00016084</td>
<td>1.14</td>
<td>0.2876</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>0.00028404</td>
<td>0.00028404</td>
<td>2.02</td>
<td>0.1586</td>
</tr>
<tr>
<td>lrbf</td>
<td>1</td>
<td>0.00070340</td>
<td>0.00070340</td>
<td>5.00</td>
<td>0.0277</td>
</tr>
<tr>
<td>bsa_c</td>
<td>1</td>
<td>0.00021796</td>
<td>0.00021796</td>
<td>1.55</td>
<td>0.2163</td>
</tr>
<tr>
<td>cic</td>
<td>1</td>
<td>0.00011711</td>
<td>0.00011711</td>
<td>0.83</td>
<td>0.3639</td>
</tr>
<tr>
<td>urine24_c</td>
<td>1</td>
<td>0.00002450</td>
<td>0.00002450</td>
<td>0.17</td>
<td>0.6774</td>
</tr>
<tr>
<td>esode_cc</td>
<td>1</td>
<td>0.00024470</td>
<td>0.00024470</td>
<td>1.74</td>
<td>0.1904</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>1</td>
<td>0.00004003</td>
<td>0.00004003</td>
<td>0.28</td>
<td>0.5950</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>1</td>
<td>0.00004978</td>
<td>0.00004978</td>
<td>0.35</td>
<td>0.5533</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>1</td>
<td>0.00011518</td>
<td>0.00011518</td>
<td>0.82</td>
<td>0.3678</td>
</tr>
<tr>
<td>surice_ca</td>
<td>1</td>
<td>0.00000542</td>
<td>0.00000542</td>
<td>0.04</td>
<td>0.8448</td>
</tr>
</tbody>
</table>

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-------------|-------------|----------------|---------|------|---|
| Intercept | 0.0571622215| 0.04533096 | 1.26 | 0.2105| |
| sex Female | 0.0027617275| 0.00374155 | 0.74 | 0.4623| |
| sex Male | 0.0000000000| | | | |
| hdyn N | -.0028481274| 0.00266325 | -1.07 | 0.2876| |
| hdyn Y | 0.0000000000| | | | |
| age | -.0002489340| 0.00017517 | -1.42 | 0.1586| |
| lrbf | -.0272340137| 0.01217775 | -2.24 | 0.0277| |
| bsa_c | 0.0095705869| 0.00768782 | 1.24 | 0.2163| |
| cic | 0.0000619851| 0.00006793 | 0.91 | 0.3639| |
| urine24_c | 0.0000005408| 0.00000130 | 0.42 | 0.6774| |
| esode_cc | 0.0000264828| 0.00002008 | 1.32 | 0.1904| |
| lalbe_ca | 0.0015946096| 0.00298889 | 0.53 | 0.5950| |
Dependent Variable: slope

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lpldle_ca</td>
<td>-0.0000220496</td>
<td>0.00003706</td>
<td>-0.59</td>
<td>0.5533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>-0.0001155691</td>
<td>0.00012770</td>
<td>-0.90</td>
<td>0.3678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>surice_ca</td>
<td>0.0003029167</td>
<td>0.00154324</td>
<td>0.20</td>
<td>0.8448</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.
Log10 Kidney Volume

The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.00054823</td>
<td>-0.00971974</td>
<td>0.00917151</td>
</tr>
<tr>
<td>2</td>
<td>0.00292561</td>
<td>0.00617843</td>
<td>-0.00325283</td>
</tr>
<tr>
<td>3</td>
<td>-0.01149919</td>
<td>-0.00394647</td>
<td>-0.00755272</td>
</tr>
<tr>
<td>4</td>
<td>-0.00598974</td>
<td>0.00373917</td>
<td>-0.00972892</td>
</tr>
<tr>
<td>5</td>
<td>-0.02571408</td>
<td>-0.00586386</td>
<td>-0.01985022</td>
</tr>
<tr>
<td>6</td>
<td>0.00998984</td>
<td>0.00430689</td>
<td>0.00568295</td>
</tr>
<tr>
<td>7</td>
<td>0.00056286</td>
<td>-0.00560891</td>
<td>0.00617177</td>
</tr>
<tr>
<td>8</td>
<td>0.00025030</td>
<td>-0.00118396</td>
<td>0.00143426</td>
</tr>
<tr>
<td>9</td>
<td>-0.00551384</td>
<td>0.00406098</td>
<td>-0.00957483</td>
</tr>
<tr>
<td>10</td>
<td>0.00922930</td>
<td>-0.00338908</td>
<td>0.01261838</td>
</tr>
<tr>
<td>11</td>
<td>-0.00957477</td>
<td>-0.00466819</td>
<td>-0.00490659</td>
</tr>
<tr>
<td>12</td>
<td>-0.00611059</td>
<td>-0.00268005</td>
<td>-0.00343053</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.00814027</td>
<td>0.00939518</td>
<td>-0.00125491</td>
</tr>
<tr>
<td>15</td>
<td>-0.01637867</td>
<td>0.00304725</td>
<td>-0.01942592</td>
</tr>
<tr>
<td>16</td>
<td>-0.00572799</td>
<td>-0.00413804</td>
<td>-0.00158996</td>
</tr>
<tr>
<td>17</td>
<td>-0.00814511</td>
<td>-0.00606901</td>
<td>-0.00207610</td>
</tr>
<tr>
<td>18</td>
<td>-0.00734971</td>
<td>0.00075509</td>
<td>-0.00810480</td>
</tr>
<tr>
<td>19</td>
<td>0.00162651</td>
<td>-0.00751859</td>
<td>0.00914510</td>
</tr>
<tr>
<td>20</td>
<td>-0.00374234</td>
<td>-0.00039164</td>
<td>-0.00335070</td>
</tr>
<tr>
<td>21</td>
<td>-0.02038315</td>
<td>0.00060809</td>
<td>-0.02099124</td>
</tr>
<tr>
<td>22</td>
<td>-0.00429967</td>
<td>0.01469464</td>
<td>-0.01899431</td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.02180381</td>
<td>0.00522350</td>
<td>0.01658031</td>
</tr>
<tr>
<td>25</td>
<td>0.01609700</td>
<td>0.00827312</td>
<td>0.00782387</td>
</tr>
<tr>
<td>26</td>
<td>0.00081142</td>
<td>-0.01115001</td>
<td>0.01196143</td>
</tr>
<tr>
<td>27</td>
<td>-0.00001299</td>
<td>0.00970017</td>
<td>-0.00971316</td>
</tr>
<tr>
<td>28</td>
<td>-0.00833008</td>
<td>0.00134543</td>
<td>-0.00967551</td>
</tr>
<tr>
<td>29</td>
<td>0.02609646</td>
<td>0.00939531</td>
<td>0.01670115</td>
</tr>
<tr>
<td>30</td>
<td>-0.00657654</td>
<td>-0.01096394</td>
<td>0.00438740</td>
</tr>
<tr>
<td>31</td>
<td>-0.01659379</td>
<td>-0.00426964</td>
<td>-0.01232416</td>
</tr>
<tr>
<td>32</td>
<td>-0.01876476</td>
<td>-0.00933822</td>
<td>-0.00942654</td>
</tr>
<tr>
<td>33</td>
<td>-0.00261276</td>
<td>-0.00241169</td>
<td>-0.00020106</td>
</tr>
<tr>
<td>34</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.01913144</td>
<td>0.00517052</td>
<td>0.01396092</td>
</tr>
<tr>
<td>36</td>
<td>-0.00538996</td>
<td>-0.00365151</td>
<td>-0.00173845</td>
</tr>
<tr>
<td>37</td>
<td>-0.02123691</td>
<td>-0.00699547</td>
<td>-0.01424144</td>
</tr>
<tr>
<td>Observation</td>
<td>Observed</td>
<td>Predicted</td>
<td>Residual</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>38</td>
<td>-0.02233969</td>
<td>-0.00942200</td>
<td>-0.01291769</td>
</tr>
<tr>
<td>39</td>
<td>-0.01656213</td>
<td>-0.00394359</td>
<td>-0.01261855</td>
</tr>
<tr>
<td>40</td>
<td>-0.01310466</td>
<td>-0.00643448</td>
<td>-0.00667018</td>
</tr>
<tr>
<td>41</td>
<td>-0.00898074</td>
<td>-0.00919812</td>
<td>0.00021738</td>
</tr>
<tr>
<td>42</td>
<td>0.00837102</td>
<td>-0.00674503</td>
<td>0.01511604</td>
</tr>
<tr>
<td>43</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.00814227</td>
<td>-0.00301311</td>
<td>0.01115538</td>
</tr>
<tr>
<td>45</td>
<td>0.00000000</td>
<td>0.00276378</td>
<td>-0.00276378</td>
</tr>
<tr>
<td>46</td>
<td>0.00854107</td>
<td>0.00059891</td>
<td>0.00794217</td>
</tr>
<tr>
<td>47</td>
<td>-0.00182583</td>
<td>-0.00840107</td>
<td>0.00657524</td>
</tr>
<tr>
<td>48</td>
<td>0.01393470</td>
<td>0.00352962</td>
<td>0.01040508</td>
</tr>
<tr>
<td>49</td>
<td>-0.01744394</td>
<td>-0.00186177</td>
<td>-0.01558217</td>
</tr>
<tr>
<td>50</td>
<td>-0.00666220</td>
<td>0.00610903</td>
<td>-0.01276313</td>
</tr>
<tr>
<td>51</td>
<td>-0.00478661</td>
<td>-0.00476139</td>
<td>-0.00002522</td>
</tr>
<tr>
<td>52</td>
<td>0.00503453</td>
<td>0.00463528</td>
<td>0.00039924</td>
</tr>
<tr>
<td>53</td>
<td>0.00581401</td>
<td>0.00233635</td>
<td>0.00347765</td>
</tr>
<tr>
<td>54</td>
<td>0.02401121</td>
<td>0.00613090</td>
<td>0.01788031</td>
</tr>
<tr>
<td>55</td>
<td>0.00429873</td>
<td>0.00255450</td>
<td>0.00174423</td>
</tr>
<tr>
<td>56</td>
<td>0.01359046</td>
<td>0.00482699</td>
<td>0.00876347</td>
</tr>
<tr>
<td>57</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0.00542600</td>
<td>-0.00001581</td>
<td>0.00544180</td>
</tr>
<tr>
<td>59</td>
<td>0.01912098</td>
<td>-0.00895495</td>
<td>0.02807594</td>
</tr>
<tr>
<td>60</td>
<td>-0.01361955</td>
<td>-0.00107395</td>
<td>-0.01254560</td>
</tr>
<tr>
<td>61</td>
<td>0.00381209</td>
<td>-0.00168673</td>
<td>0.00549882</td>
</tr>
<tr>
<td>62</td>
<td>-0.00366385</td>
<td>0.00641237</td>
<td>-0.01007623</td>
</tr>
<tr>
<td>63</td>
<td>-0.00705808</td>
<td>0.00175511</td>
<td>-0.00881319</td>
</tr>
<tr>
<td>64</td>
<td>-0.01186838</td>
<td>-0.00350556</td>
<td>-0.00836282</td>
</tr>
<tr>
<td>65</td>
<td>0.02576693</td>
<td>-0.00179197</td>
<td>0.02755891</td>
</tr>
<tr>
<td>66</td>
<td>0.01648835</td>
<td>0.01056160</td>
<td>0.00592675</td>
</tr>
<tr>
<td>67</td>
<td>-0.00879163</td>
<td>-0.00161117</td>
<td>-0.00718046</td>
</tr>
<tr>
<td>68</td>
<td>-0.01120477</td>
<td>0.00068805</td>
<td>-0.01189282</td>
</tr>
<tr>
<td>69</td>
<td>0.00882574</td>
<td>0.00291578</td>
<td>0.00590996</td>
</tr>
<tr>
<td>70</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>-0.00220654</td>
<td>0.00094495</td>
<td>-0.00315149</td>
</tr>
<tr>
<td>72</td>
<td>0.00888465</td>
<td>-0.00453000</td>
<td>0.01341465</td>
</tr>
<tr>
<td>73</td>
<td>-0.03660110</td>
<td>-0.01224559</td>
<td>-0.02435651</td>
</tr>
<tr>
<td>74</td>
<td>0.00530223</td>
<td>-0.00139490</td>
<td>0.00669713</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>-0.00378696</td>
<td>-0.00509977</td>
<td>0.00131281</td>
</tr>
<tr>
<td>76</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>0.00506953</td>
<td>0.00273221</td>
<td>0.00233732</td>
</tr>
<tr>
<td>78</td>
<td>0.02454951</td>
<td>-0.00126431</td>
<td>0.02581382</td>
</tr>
<tr>
<td>79</td>
<td>0.00277202</td>
<td>-0.00415469</td>
<td>0.00692671</td>
</tr>
<tr>
<td>80</td>
<td>0.00272877</td>
<td>0.00320904</td>
<td>-0.00048027</td>
</tr>
<tr>
<td>81</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>0.00557968</td>
<td>0.00434609</td>
<td>0.00123358</td>
</tr>
<tr>
<td>84</td>
<td>0.01788276</td>
<td>0.00749706</td>
<td>0.01038570</td>
</tr>
<tr>
<td>85</td>
<td>-0.01416707</td>
<td>-0.00627519</td>
<td>-0.00789187</td>
</tr>
<tr>
<td>86</td>
<td>-0.01168912</td>
<td>-0.00429395</td>
<td>-0.00739517</td>
</tr>
<tr>
<td>87</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>-0.03068621</td>
<td>-0.00308488</td>
<td>-0.02760132</td>
</tr>
<tr>
<td>89</td>
<td>-0.01232418</td>
<td>-0.00446988</td>
<td>-0.00785430</td>
</tr>
<tr>
<td>90</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>0.00808567</td>
<td>-0.00043152</td>
<td>0.00851719</td>
</tr>
<tr>
<td>93</td>
<td>-0.00341060</td>
<td>-0.00176220</td>
<td>-0.00164840</td>
</tr>
<tr>
<td>94</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>0.00668017</td>
<td>-0.00603656</td>
<td>0.01271673</td>
</tr>
<tr>
<td>96</td>
<td>-0.01072388</td>
<td>-0.00375596</td>
<td>-0.00696792</td>
</tr>
<tr>
<td>97</td>
<td>0.00398322</td>
<td>-0.00237458</td>
<td>0.00635780</td>
</tr>
<tr>
<td>98</td>
<td>-0.00830219</td>
<td>-0.00987214</td>
<td>0.00156996</td>
</tr>
<tr>
<td>99</td>
<td>0.00428305</td>
<td>-0.00920473</td>
<td>0.01348778</td>
</tr>
<tr>
<td>100</td>
<td>0.00251007</td>
<td>0.00074729</td>
<td>0.00176278</td>
</tr>
<tr>
<td>101</td>
<td>-0.00237457</td>
<td>-0.00415345</td>
<td>0.00177887</td>
</tr>
<tr>
<td>102</td>
<td>0.00720762</td>
<td>0.00640671</td>
<td>0.00080091</td>
</tr>
<tr>
<td>103</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>0.01271372</td>
<td>0.00054943</td>
<td>0.01216429</td>
</tr>
<tr>
<td>105</td>
<td>0.01429699</td>
<td>-0.00085778</td>
<td>0.01515477</td>
</tr>
<tr>
<td>106</td>
<td>0.00354145</td>
<td>-0.00685271</td>
<td>0.01039416</td>
</tr>
<tr>
<td>107</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>-0.01812466</td>
<td>-0.00100904</td>
<td>-0.01711562</td>
</tr>
<tr>
<td>109</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>112 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>-0.01925310</td>
<td>-0.00492466</td>
<td>-0.01432844</td>
</tr>
<tr>
<td>114</td>
<td>-0.00933022</td>
<td>-0.01035391</td>
<td>0.00102370</td>
</tr>
<tr>
<td>115 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>-0.00727888</td>
<td>-0.00217055</td>
<td>-0.00510833</td>
</tr>
<tr>
<td>118</td>
<td>0.01160854</td>
<td>-0.00217072</td>
<td>0.01377926</td>
</tr>
<tr>
<td>119</td>
<td>0.00115646</td>
<td>-0.00677443</td>
<td>0.00793090</td>
</tr>
<tr>
<td>120</td>
<td>-0.01807265</td>
<td>0.00150237</td>
<td>-0.01957501</td>
</tr>
<tr>
<td>121</td>
<td>-0.00246829</td>
<td>-0.00423046</td>
<td>0.00176217</td>
</tr>
<tr>
<td>122 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>0.00991375</td>
<td>0.00051136</td>
<td>0.00940239</td>
</tr>
<tr>
<td>124</td>
<td>0.01521740</td>
<td>0.00685559</td>
<td>0.00836181</td>
</tr>
<tr>
<td>125 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>-0.00076953</td>
<td>-0.00129038</td>
<td>0.00052085</td>
</tr>
<tr>
<td>127</td>
<td>-0.01035746</td>
<td>-0.00109442</td>
<td>-0.00926304</td>
</tr>
<tr>
<td>128 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>0.00255263</td>
<td>0.00108420</td>
<td>0.00146842</td>
</tr>
<tr>
<td>130 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>-0.01168877</td>
<td>-0.00323931</td>
<td>-0.00844945</td>
</tr>
</tbody>
</table>

* Observation was not used in this analysis

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Residuals</td>
<td>0.00000000</td>
</tr>
<tr>
<td>Sum of Squared Residuals</td>
<td>0.01307962</td>
</tr>
<tr>
<td>Sum of Squared Residuals - Error SS</td>
<td>-0.00000000</td>
</tr>
<tr>
<td>First Order Autocorrelation</td>
<td>0.08965913</td>
</tr>
<tr>
<td>Durbin-Watson D</td>
<td>1.80879225</td>
</tr>
</tbody>
</table>
The Mixed Procedure

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Set</td>
</tr>
<tr>
<td>Dependent Variable</td>
</tr>
<tr>
<td>Covariance Structure</td>
</tr>
<tr>
<td>Subject Effect</td>
</tr>
<tr>
<td>Estimation Method</td>
</tr>
<tr>
<td>Residual Variance Method</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>------------------------------------</td>
</tr>
<tr>
<td>pkdid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance Parameters</td>
</tr>
<tr>
<td>Columns in X</td>
</tr>
<tr>
<td>Columns in Z Per Subject</td>
</tr>
<tr>
<td>Subjects</td>
</tr>
<tr>
<td>Max Obs Per Subject</td>
</tr>
<tr>
<td>Observations Used</td>
</tr>
<tr>
<td>Observations Not Used</td>
</tr>
<tr>
<td>Total Observations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration</td>
</tr>
<tr>
<td>------------------------------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>-1131.36038660</td>
<td>0.09334271</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-1258.46742112</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-1367.74935015</td>
<td>0.05417481</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1449.84882978</td>
<td>0.03403243</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-1502.32106385</td>
<td>0.01775233</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-1529.69822844</td>
<td>0.00723653</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-1540.63174641</td>
<td>0.00191961</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>-1543.38080085</td>
<td>0.00020584</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>-1543.65137301</td>
<td>0.00000315</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-1543.65526644</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

Convergence criteria met.

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>pkdid</td>
<td>0.05775</td>
</tr>
<tr>
<td>visc</td>
<td>pkdid</td>
<td>0.000217</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>0.000294</td>
</tr>
</tbody>
</table>

Fit Statistics

- **-2 Log Likelihood**: -1543.7
- **AIC (smaller is better)**: -1533.7
- **AICC (smaller is better)**: -1533.5
- **BIC (smaller is better)**: -1519.3

Solution for Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.9491</td>
<td>0.02104</td>
<td>130</td>
<td>140.20</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>0.02103</td>
<td>0.001479</td>
<td>128</td>
<td>14.22</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|---------|-----|-----|
| Intercept | 200922 | -0.02673 | 0.02467 | 231 | -1.08 | 0.2799 |
| visc | 200922 | -0.00055 | 0.006974 | 231 | -0.08 | 0.9374 |
| Intercept | 201800 | 0.5160 | 0.02492 | 231 | 20.71 | <.0001 |
| visc | 201800 | 0.002926 | 0.006843 | 231 | 0.43 | 0.6694 |
| Intercept | 201877 | -0.05669 | 0.02484 | 231 | -2.28 | 0.0234 |
| visc | 201877 | -0.01150 | 0.006849 | 231 | -1.68 | 0.0945 |
| Intercept | 203328 | 0.08394 | 0.02505 | 231 | 3.35 | 0.0009 |
| visc | 203328 | -0.00599 | 0.006708 | 231 | -0.89 | 0.3729 |
| Intercept | 204555 | 0.1151 | 0.02482 | 231 | 4.64 | <.0001 |
| visc | 204555 | -0.02571 | 0.006778 | 231 | -3.79 | 0.0002 |
| Intercept | 205758 | 0.3994 | 0.02478 | 231 | 1.61 | 0.1085 |
| visc | 205758 | 0.009990 | 0.006696 | 231 | 1.49 | 0.1371 |
| Intercept | 206816 | -0.01152 | 0.02486 | 231 | -0.46 | 0.6436 |
| visc | 206816 | 0.000563 | 0.006928 | 231 | 0.08 | 0.9353 |
| Intercept | 208280 | -0.1565 | 0.02486 | 231 | -6.29 | <.0001 |
| visc | 208280 | -0.00250 | 0.006881 | 231 | 0.04 | 0.9710 |
| Intercept | 208324 | -0.04840 | 0.02484 | 231 | -1.95 | 0.0526 |
| visc | 208324 | -0.00551 | 0.006878 | 231 | -0.80 | 0.4236 |
| Intercept | 209281 | -0.1566 | 0.02497 | 231 | -6.27 | <.0001 |
| visc | 209281 | 0.009229 | 0.007029 | 231 | 1.31 | 0.1905 |
| Intercept | 213454 | -0.3052 | 0.02486 | 231 | -12.27 | <.0001 |
| visc | 213454 | -0.00957 | 0.006632 | 231 | -1.44 | 0.1502 |
| Intercept | 214376 | -0.05531 | 0.02490 | 231 | -2.22 | 0.0273 |
| visc | 214376 | -0.00611 | 0.006942 | 231 | -0.88 | 0.3797 |
| Intercept | 215052 | -0.2103 | 0.02502 | 231 | -8.40 | <.0001 |
| visc | 215052 | 0.04084 | 0.006443 | 231 | 6.34 | <.0001 |
| Intercept | 216086 | 0.5045 | 0.02491 | 231 | 20.26 | <.0001 |
| visc | 216086 | 0.008140 | 0.006929 | 231 | 1.17 | 0.2413 |
| Intercept | 220068 | 0.5601 | 0.02486 | 231 | 22.53 | <.0001 |
| visc | 220068 | -0.01638 | 0.006746 | 231 | -2.43 | 0.0159 |
| Intercept | 223343 | 0.08219 | 0.02481 | 231 | 3.31 | 0.0011 |
| visc | 223343 | -0.00573 | 0.006704 | 231 | -0.85 | 0.3937 |
| Intercept | 223534 | 0.1343 | 0.02507 | 231 | 5.36 | <.0001 |
| visc | 223534 | -0.00815 | 0.009306 | 231 | -0.88 | 0.3824 |
| Intercept | 223635 | -0.09883 | 0.02486 | 231 | -3.98 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|----|---------|------|---|
| visc | 223635 | -0.00735 | 0.006161 | 231| -1.19 | 0.2341 |
| Intercept | 224502 | -0.1396 | 0.02461 | 231| -5.67 | <.0001|
| visc | 224502 | 0.001627 | 0.006840 | 231| 0.24 | 0.8123 |
| Intercept | 226640 | 0.08752 | 0.02485 | 231| 3.52 | 0.0005|
| visc | 226640 | -0.00374 | 0.006860 | 231| -0.55 | 0.5859 |
| Intercept | 229428 | 0.007870 | 0.02486 | 231| 0.32 | 0.7518 |
| visc | 229428 | -0.02038 | 0.006944 | 231| -2.94 | 0.0037|
| Intercept | 229733 | 0.1192 | 0.02472 | 231| 4.82 | <.0001|
| visc | 229733 | -0.00430 | 0.006500 | 231| -0.66 | 0.5089 |
| Intercept | 232174 | -0.2237 | 0.02523 | 231| -8.87 | <.0001|
| visc | 232174 | -0.00256 | 0.008843 | 231| -0.29 | 0.7729 |
| Intercept | 234053 | 0.2531 | 0.02483 | 231| 10.19 | <.0001|
| visc | 234053 | 0.02180 | 0.006927 | 231| 3.15 | 0.0019|
| Intercept | 234650 | -0.00224 | 0.02475 | 231| -0.09 | 0.9279 |
| visc | 234650 | 0.01610 | 0.006903 | 231| 2.33 | 0.0206|
| Intercept | 234795 | -0.3401 | 0.02640 | 231| -12.88 | <.0001|
| visc | 234795 | 0.000811 | 0.007157 | 231| 0.11 | 0.9098|
| Intercept | 235752 | -0.08131 | 0.02528 | 231| -3.22 | 0.0015|
| visc | 235752 | -0.00001 | 0.007115 | 231| -0.00 | 0.9985|
| Intercept | 236202 | 0.3863 | 0.02478 | 231| 15.59 | <.0001|
| visc | 236202 | -0.00833 | 0.006710 | 231| -1.24 | 0.2157|
| Intercept | 237192 | 0.2643 | 0.02483 | 231| 10.64 | <.0001|
| visc | 237192 | 0.02610 | 0.006721 | 231| 3.88 | 0.0001|
| Intercept | 239960 | 0.02847 | 0.02481 | 231| 1.15 | 0.2524|
| visc | 239960 | -0.00658 | 0.006493 | 231| -1.01 | 0.3122|
| Intercept | 241501 | -0.3167 | 0.02465 | 231| -12.85 | <.0001|
| visc | 241501 | -0.01659 | 0.005688 | 231| -2.92 | 0.0039|
| Intercept | 242715 | -0.1031 | 0.02491 | 231| -4.14 | <.0001|
| visc | 242715 | -0.01876 | 0.006712 | 231| -2.80 | 0.0056|
| Intercept | 243560 | -0.3463 | 0.02504 | 231| -13.83 | <.0001|
| visc | 243560 | -0.00261 | 0.009287 | 231| -0.28 | 0.7787|
| Intercept | 243738 | 0.2669 | 0.02498 | 231| 10.69 | <.0001|
| visc | 243738 | 0.01075 | 0.009324 | 231| 1.15 | 0.2500|
| Intercept | 244111 | -0.1643 | 0.02480 | 231| -6.63 | <.0001|
| visc | 244111 | 0.01913 | 0.006348 | 231| 3.01 | 0.0029|
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|-----|---------|------|---|
| Intercept | 244831 | -0.2607 | 0.02503 | 231 | -10.41 | <.0001 |
| visc | 244831 | -0.00539 | 0.006960 | 231 | -0.77 | 0.4395 |
| Intercept | 245990 | -0.2987 | 0.02467 | 231 | -12.11 | <.0001 |
| visc | 245990 | -0.02124 | 0.006181 | 231 | -3.44 | 0.0007 |
| Intercept | 246620 | -0.3654 | 0.02497 | 231 | -14.64 | <.0001 |
| visc | 246620 | -0.02234 | 0.006714 | 231 | -3.33 | 0.0010 |
| Intercept | 247880 | -0.2245 | 0.02480 | 231 | -9.05 | <.0001 |
| visc | 247880 | -0.01656 | 0.006362 | 231 | -2.60 | 0.0098 |
| Intercept | 248712 | -0.1132 | 0.02499 | 231 | -4.53 | <.0001 |
| visc | 248712 | -0.01310 | 0.006709 | 231 | -1.95 | 0.0520 |
| Intercept | 249569 | -0.2245 | 0.02480 | 231 | -9.05 | <.0001 |
| visc | 249569 | -0.01656 | 0.006362 | 231 | -2.60 | 0.0098 |
| Intercept | 252086 | 0.08531 | 0.02508 | 231 | 3.40 | 0.0008 |
| visc | 252086 | -0.00898 | 0.006954 | 231 | -1.29 | 0.1979 |
| Intercept | 255765 | -0.1574 | 0.02486 | 231 | -6.33 | <.0001 |
| visc | 255765 | 0.008371 | 0.006887 | 231 | 1.22 | 0.2254 |
| Intercept | 256171 | -0.1350 | 0.02469 | 231 | -5.47 | <.0001 |
| visc | 256171 | -0.00190 | 0.007130 | 231 | -0.27 | 0.7904 |
| Intercept | 258950 | 0.06695 | 0.02504 | 231 | 2.67 | 0.0080 |
| visc | 258950 | 0.008142 | 0.01249 | 231 | 0.65 | 0.5150 |
| Intercept | 259940 | -0.2146 | 0.02702 | 231 | -7.94 | <.0001 |
| visc | 259940 | 0 | 0.01473 | 231 | 0.00 | 1.0000 |
| Intercept | 263617 | -0.2084 | 0.02491 | 231 | -8.37 | <.0001 |
| visc | 263617 | 0.008541 | 0.006838 | 231 | 1.25 | 0.2129 |
| Intercept | 264225 | -0.03283 | 0.02482 | 231 | -1.32 | 0.1873 |
| visc | 264225 | -0.00183 | 0.006667 | 231 | -0.27 | 0.7844 |
| Intercept | 264348 | -0.1176 | 0.02481 | 231 | -4.74 | <.0001 |
| visc | 264348 | 0.01393 | 0.006894 | 231 | 2.02 | 0.0444 |
| Intercept | 265171 | -0.3899 | 0.02487 | 231 | -15.68 | <.0001 |
| visc | 265171 | -0.01744 | 0.006824 | 231 | -2.56 | 0.0112 |
| Intercept | 268455 | 0.3496 | 0.02500 | 231 | 13.98 | <.0001 |
| visc | 268455 | -0.00666 | 0.006729 | 231 | -0.99 | 0.3231 |
| Intercept | 277043 | -0.2131 | 0.02484 | 231 | -8.58 | <.0001 |
| visc | 277043 | -0.00479 | 0.009409 | 231 | -0.51 | 0.6114 |
| Intercept | 277146 | -0.2407 | 0.02482 | 231 | -9.70 | <.0001 |
| visc | 277146 | 0.005035 | 0.006855 | 231 | 0.73 | 0.4634 |
| Intercept | 271662 | 0.2233 | 0.02494 | 231 | 8.95 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|---------|------|----|---------|------|---|
| visc | 271662 | 0.005814 | 0.01277 | 231 | 0.46| 0.6494 |
| Intercept | 271684 | -0.2608 | 0.02492 | 231 | -10.47| <.0001 |
| visc | 271684 | 0.02401 | 0.006665| 231 | 3.60| 0.0004 |
| Intercept | 273214 | 0.1034 | 0.02468 | 231 | 4.19| <.0001 |
| visc | 273214 | 0.004299 | 0.007145| 231 | 0.60| 0.5480 |
| Intercept | 273225 | 0.1840 | 0.02597 | 231 | 7.08| <.0001 |
| visc | 273225 | 0.01359 | 0.006920| 231 | 1.96| 0.0507 |
| Intercept | 277490 | -0.1518 | 0.02497 | 231 | -6.08| <.0001 |
| visc | 277490 | 0.02738 | 0.006915| 231 | 3.96| 0.0001 |
| Intercept | 281000 | 0.003341 | 0.02479 | 231 | 0.13| 0.8929 |
| visc | 281000 | 0.005426 | 0.006904| 231 | 0.79| 0.4327 |
| Intercept | 281977 | 0.08993 | 0.02487 | 231 | 3.62| 0.0004 |
| visc | 281977 | 0.01912 | 0.006807| 231 | 2.81| 0.0054 |
| Intercept | 283722 | 0.03461 | 0.02474 | 231 | 1.40| 0.1631 |
| visc | 283722 | -0.01362 | 0.006774| 231 | -2.01| 0.0455 |
| Intercept | 283935 | -0.01084 | 0.02516 | 231 | -0.43| 0.6669 |
| visc | 283935 | 0.003812 | 0.008891| 231 | 0.43| 0.6685 |
| Intercept | 285601 | 0.5115 | 0.02491 | 231 | 20.53| <.0001 |
| visc | 285601 | -0.00366 | 0.006817| 231 | -0.54| 0.5915 |
| Intercept | 286095 | -0.06651 | 0.02484 | 231 | -2.68| 0.0079 |
| visc | 286095 | -0.00706 | 0.006817| 231 | -1.04| 0.3016 |
| Intercept | 290336 | -0.1515 | 0.02499 | 231 | -6.06| <.0001 |
| visc | 290336 | -0.01187 | 0.006707| 231 | -1.77| 0.0781 |
| Intercept | 292362 | 0.2939 | 0.02506 | 231 | 11.73| <.0001 |
| visc | 292362 | 0.02577 | 0.006577| 231 | 3.92| 0.0001 |
| Intercept | 293317 | 0.4163 | 0.02463 | 231 | 16.90| <.0001 |
| visc | 293317 | 0.01649 | 0.006649| 231 | 2.48| 0.0139 |
| Intercept | 293598 | 0.4937 | 0.02520 | 231 | 19.59| <.0001 |
| visc | 293598 | -0.00879 | 0.009221| 231 | -0.95| 0.3414 |
| Intercept | 294105 | 0.03988 | 0.02513 | 231 | 1.59| 0.1139 |
| visc | 294105 | -0.01120 | 0.006898| 231 | -1.62| 0.1057 |
| Intercept | 294511 | -0.2563 | 0.02491 | 231 | -10.29| <.0001 |
| visc | 294511 | 0.008826 | 0.006752| 231 | 1.31| 0.1925 |
| Intercept | 295106 | -0.2298 | 0.02479 | 231 | -9.27| <.0001 |
| visc | 295106 | -0.00621 | 0.006552| 231 | -0.95| 0.3439 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|-----|---------|------|---|
| Intercept | 295940 | 0.2856 | 0.02472 | 231 | 11.56 | <.0001 |
| visc | 295940 | -0.00221 | 0.006724 | 231 | -0.33 | 0.7431 |
| Intercept | 298515 | 0.2359 | 0.02480 | 231 | 9.51 | <.0001 |
| visc | 298515 | 0.008885 | 0.006866 | 231 | 1.29 | 0.1969 |
| Intercept | 299663 | -0.3484 | 0.02482 | 231 | -14.04 | <.0001 |
| visc | 299663 | -0.03660 | 0.006463 | 231 | -5.66 | <.0001 |
| Intercept | 300641 | -0.2071 | 0.02479 | 231 | -8.35 | <.0001 |
| visc | 300641 | 0.005302 | 0.006829 | 231 | 0.78 | 0.4383 |
| Intercept | 300696 | 0.07763 | 0.02483 | 231 | 3.13 | 0.0020 |
| visc | 300696 | -0.00379 | 0.006463 | 231 | -0.56 | 0.5771 |
| Intercept | 300911 | -0.3484 | 0.02482 | 231 | -14.04 | <.0001 |
| visc | 300911 | -0.00360 | 0.006463 | 231 | -5.66 | <.0001 |
| Intercept | 301157 | 0.2460 | 0.02482 | 231 | 9.91 | <.0001 |
| visc | 301157 | 0.005070 | 0.006829 | 231 | 0.78 | 0.4383 |
| Intercept | 301372 | 0.01366 | 0.02482 | 231 | 0.55 | 0.4610 |
| visc | 301372 | 0.02455 | 0.006463 | 231 | 3.53 | 0.0005 |
| Intercept | 303868 | -0.5037 | 0.02482 | 231 | -20.28 | <.0001 |
| visc | 303868 | 0.002772 | 0.006463 | 231 | 0.41 | 0.6793 |
| Intercept | 304860 | 0.2677 | 0.02482 | 231 | 10.79 | <.0001 |
| visc | 304860 | 0.002729 | 0.006463 | 231 | 0.40 | 0.6927 |
| Intercept | 306546 | -0.2132 | 0.02482 | 231 | -8.57 | <.0001 |
| visc | 306546 | 0.002239 | 0.006463 | 231 | 0.33 | 0.7418 |
| Intercept | 312317 | -0.2598 | 0.02482 | 231 | -10.47 | <.0001 |
| visc | 312317 | 0.01914 | 0.006463 | 231 | 2.74 | 0.0066 |
| Intercept | 313195 | 0.3278 | 0.02482 | 231 | 13.20 | <.0001 |
| visc | 313195 | 0.005580 | 0.006463 | 231 | 0.83 | 0.4060 |
| Intercept | 313307 | 0.01660 | 0.02482 | 231 | 0.67 | 0.5044 |
| visc | 313307 | 0.01788 | 0.006463 | 231 | 2.61 | 0.0097 |
| Intercept | 313893 | -0.2384 | 0.02482 | 231 | -9.59 | <.0001 |
| visc | 313893 | -0.01417 | 0.006463 | 231 | -2.05 | 0.0416 |
| Intercept | 316110 | -0.08164 | 0.02482 | 231 | -3.28 | 0.0012 |
| visc | 316110 | -0.01169 | 0.006463 | 231 | -1.69 | 0.0916 |
| Intercept | 318562 | -0.3113 | 0.02482 | 231 | -12.51 | <.0001 |
| visc | 318562 | -0.01489 | 0.006463 | 231 | -2.12 | 0.0355 |
| Intercept | 320182 | 0.1061 | 0.02482 | 231 | 4.27 | <.0001 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|-----|---------|------|-----|
| visc | 320182 | -0.03069 | 0.006760 | 231 | -4.54 | <.0001 |
| Intercept | 320957 | -0.3876 | 0.02481 | 231 | -15.62 | <.0001 |
| visc | 320957 | -0.01232 | 0.006868 | 231 | -1.79 | 0.0741 |
| Intercept | 321611 | 0.2871 | 0.02702 | 231 | 10.62 | <.0001 |
| visc | 321611 | 0.0000 | 0.01473 | 231 | 0.00 | 1.0000 |
| Intercept | 323837 | -0.03597 | 0.02492 | 231 | -1.44 | 0.1503 |
| visc | 323837 | -0.00223 | 0.006728 | 231 | -0.33 | 0.7410 |
| Intercept | 325290 | 0.1182 | 0.02480 | 231 | 4.77 | <.0001 |
| visc | 325290 | 0.008086 | 0.006869 | 231 | 1.18 | 0.2403 |
| Intercept | 327055 | -0.2454 | 0.02482 | 231 | -9.89 | <.0001 |
| visc | 327055 | -0.00341 | 0.006993 | 231 | -0.49 | 0.6262 |
| Intercept | 327325 | -0.08131 | 0.02490 | 231 | -3.27 | 0.0013 |
| visc | 327325 | -0.00740 | 0.006851 | 231 | -1.08 | 0.2810 |
| Intercept | 327933 | -0.1896 | 0.02482 | 231 | -7.64 | <.0001 |
| visc | 327933 | 0.006680 | 0.006872 | 231 | 0.97 | 0.3320 |
| Intercept | 331318 | -0.3577 | 0.02486 | 231 | -14.39 | <.0001 |
| visc | 331318 | -0.01072 | 0.006870 | 231 | -1.56 | 0.1199 |
| Intercept | 333524 | 0.5390 | 0.02483 | 231 | 21.71 | <.0001 |
| visc | 333524 | 0.003983 | 0.006862 | 231 | 0.58 | 0.5621 |
| Intercept | 334672 | 0.2932 | 0.02477 | 231 | 11.84 | <.0001 |
| visc | 334672 | -0.00830 | 0.006335 | 231 | -1.31 | 0.1913 |
| Intercept | 336167 | -0.09955 | 0.02477 | 231 | -4.02 | <.0001 |
| visc | 336167 | 0.004283 | 0.007481 | 231 | 0.57 | 0.5675 |
| Intercept | 336843 | -0.09536 | 0.02483 | 231 | -3.84 | 0.0002 |
| visc | 336843 | 0.002510 | 0.006859 | 231 | 0.37 | 0.7147 |
| Intercept | 337315 | -0.00596 | 0.02483 | 231 | -0.24 | 0.8105 |
| visc | 337315 | -0.00237 | 0.006901 | 231 | -0.34 | 0.7311 |
| Intercept | 342131 | -0.00155 | 0.02480 | 231 | -0.06 | 0.9503 |
| visc | 342131 | 0.007208 | 0.006743 | 231 | 1.07 | 0.2862 |
| Intercept | 343097 | 0.2477 | 0.02485 | 231 | 9.97 | <.0001 |
| visc | 343097 | 0.02409 | 0.006828 | 231 | 3.53 | 0.0005 |
| Intercept | 343233 | 0.1801 | 0.02485 | 231 | 7.25 | <.0001 |
| visc | 343233 | 0.01271 | 0.007016 | 231 | 1.81 | 0.0713 |
| Intercept | 354494 | -0.1472 | 0.02593 | 231 | -5.68 | <.0001 |
| visc | 354494 | 0.01430 | 0.007022 | 231 | 2.04 | 0.0429 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|---------|------------------------|----------|--------------|-----|---------|-------|
| Intercept | 358230 | -0.03013 | 0.02489 | 231 | -1.21 | 0.2273 |
| visc | 358230 | 0.003541 | 0.006908 | 231 | 0.51 | 0.6087 |
| Intercept | 359308 | -0.00306 | 0.02485 | 231 | -0.12 | 0.9021 |
| visc | 359308 | -0.00105 | 0.006832 | 231 | -0.15 | 0.8780 |
| Intercept | 364664 | -0.3714 | 0.02481 | 231 | -14.97 | <.0001 |
| visc | 364664 | -0.01812 | 0.006821 | 231 | -2.66 | 0.0084 |
| Intercept | 367836 | 0.3464 | 0.02475 | 231 | 14.00 | <.0001 |
| visc | 367836 | 0.003541 | 0.006908 | 231 | 0.51 | 0.6087 |
| Intercept | 364664 | -0.3714 | 0.02481 | 231 | -14.97 | <.0001 |
| visc | 364664 | -0.01812 | 0.006821 | 231 | -2.66 | 0.0084 |
| Intercept | 367836 | 0.3464 | 0.02475 | 231 | 14.00 | <.0001 |
| visc | 367836 | 0.003541 | 0.006908 | 231 | 0.51 | 0.6087 |
| Intercept | 364664 | -0.3714 | 0.02481 | 231 | -14.97 | <.0001 |
| visc | 364664 | -0.01812 | 0.006821 | 231 | -2.66 | 0.0084 |
| Intercept | 367836 | 0.3464 | 0.02475 | 231 | 14.00 | <.0001 |
| visc | 367836 | 0.003541 | 0.006908 | 231 | 0.51 | 0.6087 |
| Intercept | 364664 | -0.3714 | 0.02481 | 231 | -14.97 | <.0001 |
| visc | 364664 | -0.01812 | 0.006821 | 231 | -2.66 | 0.0084 |
| Intercept | 367836 | 0.3464 | 0.02475 | 231 | 14.00 | <.0001 |
| visc | 367836 | 0.003541 | 0.006908 | 231 | 0.51 | 0.6087 |
| Intercept | 364664 | -0.3714 | 0.02481 | 231 | -14.97 | <.0001 |
| visc | 364664 | -0.01812 | 0.006821 | 231 | -2.66 | 0.0084 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|-----|---------|-------|---|
| visc | 386040 | 0.009914 | 0.006553 | 231 | 1.51 | 0.1317 |
| Intercept | 386488 | 0.1109 | 0.02487 | 231 | 4.46 | <.0001 |
| visc | 386488 | 0.01522 | 0.006912 | 231 | 2.20 | 0.0287 |
| Intercept | 386758 | 0.2903 | 0.02483 | 231 | 11.69 | <.0001 |
| visc | 386758 | 0.01011 | 0.006703 | 231 | 1.51 | 0.1330 |
| Intercept | 387658 | 0.2974 | 0.02484 | 231 | 11.97 | <.0001 |
| visc | 387658 | -0.00077 | 0.006763 | 231 | -0.11 | 0.9095 |
| Intercept | 392316 | 0.1647 | 0.02482 | 231 | 6.64 | <.0001 |
| visc | 392316 | -0.01036 | 0.006789 | 231 | -1.53 | 0.1285 |
| Intercept | 393936 | 0.06019 | 0.02484 | 231 | 2.42 | 0.0161 |
| visc | 393936 | 0.000286 | 0.006850 | 231 | 0.04 | 0.9667 |
| Intercept | 394588 | 0.3816 | 0.02480 | 231 | 15.39 | <.0001 |
| visc | 394588 | 0.002553 | 0.007104 | 231 | 0.36 | 0.7197 |
| Intercept | 397661 | 0.3061 | 0.02483 | 231 | 12.33 | <.0001 |
| visc | 397661 | 0.000208 | 0.006855 | 231 | 0.03 | 0.9758 |
| Intercept | 397931 | -0.02920 | 0.02640 | 231 | -1.11 | 0.2699 |
| visc | 397931 | -0.01169 | 0.007157 | 231 | -1.63 | 0.1038 |

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>1</td>
<td>128</td>
<td>202.10</td>
<td><.0001</td>
</tr>
</tbody>
</table>
The MEANS Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>N</th>
<th>Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>Participant/ID Number</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>slope</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>SplSE</td>
<td>Std Err Pred</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>pccn</td>
<td>PCC/Number</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>dvdate</td>
<td>Visit/Date/#3 (1)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>vis</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>urine24_c</td>
<td>24hr Urine (dL/24hr)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>surice_ca</td>
<td>Serum:Uric Acid (mg/dL) (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lpdhle_ca</td>
<td>Serum:HDL (mg/dL) (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>albe_ca</td>
<td>Urine:Albumin Excr (mg/24hr) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ecitre_ca</td>
<td>Urine:Citrate Excr (mg/24hr) (c)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>esode_cc</td>
<td>Urine:Sodium Excr (mEq/24h) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>xbvdate</td>
<td>Visit/Date</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>cic</td>
<td>Correct Iothalamate Clear # 10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>bsa_c</td>
<td>BSA (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>hdyn</td>
<td>Hypertension yes/no/ # 12</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>bmi_c</td>
<td>BMI (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>age</td>
<td>Age of participant</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>MDRD GFR</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mskvs</td>
<td>MR K Vol/Sum Ster</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrrcvsv</td>
<td>MR C Vol/Sum Reg</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>visc</td>
<td>Relative Visit</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrctps</td>
<td>Percent MR Cyst Vol</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lmrrskvs</td>
<td>Log10 MR K Vol/Sum Ster</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lmrr cvs</td>
<td>Log10 MR C Vol/Sum Reg</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>Log10 Urine:Albumin Excr (mg/24hr) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>lectre_ca</td>
<td>Log10 Urine:Citrate Excr (mg/24hr) (c)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>lMDRD_GFR</td>
<td>Log10 MDRD GFR</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lrbf</td>
<td>Log10 Renal Blood Flow Corrected for BSA</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>lrvr</td>
<td>Log10 RVR corrected for BSA</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>lrpfx</td>
<td>Log10 Remal Plasma Flow</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>lff</td>
<td>Log10 Filtration Fraction</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>race</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>sex</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>ind1_cic</td>
<td>CIC < or >= 100?</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ind2_cic</td>
<td>CIC < or >= 85?</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>genetyp</td>
<td>Gene Type</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>A vagina</td>
<td>Average Systolic BP over years</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Avgdiastol</td>
<td>Average Diastolic BP over years</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
The GLM Procedure

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>2</td>
<td>Female Male</td>
</tr>
<tr>
<td>hdyn</td>
<td>2</td>
<td>Y</td>
</tr>
</tbody>
</table>

Number of observations 131

NOTE: Due to missing values, only 107 observations can be used in this analysis.
Dependent Variable: slope

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12</td>
<td>0.00299820</td>
<td>0.00024985</td>
<td>1.78</td>
<td>0.0628</td>
</tr>
<tr>
<td>Error</td>
<td>94</td>
<td>0.01320105</td>
<td>0.00014044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>106</td>
<td>0.01619926</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Square Coeff Var Root MSE slope Mean
0.185083 -993.2735 0.011851 -0.001193

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>0.00008670</td>
<td>0.00008670</td>
<td>0.62</td>
<td>0.4340</td>
</tr>
<tr>
<td>hdyn</td>
<td>1</td>
<td>0.00016850</td>
<td>0.00016850</td>
<td>1.20</td>
<td>0.2762</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>0.00038423</td>
<td>0.00038423</td>
<td>2.74</td>
<td>0.1014</td>
</tr>
<tr>
<td>lrbf</td>
<td>1</td>
<td>0.00056027</td>
<td>0.00056027</td>
<td>3.99</td>
<td>0.0487</td>
</tr>
<tr>
<td>bsa_c</td>
<td>1</td>
<td>0.00025026</td>
<td>0.00025026</td>
<td>1.78</td>
<td>0.1851</td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>1</td>
<td>0.00000441</td>
<td>0.00000441</td>
<td>0.03</td>
<td>0.8597</td>
</tr>
<tr>
<td>urine24_c</td>
<td>1</td>
<td>0.00001407</td>
<td>0.00001407</td>
<td>0.10</td>
<td>0.7523</td>
</tr>
<tr>
<td>esode_cc</td>
<td>1</td>
<td>0.00029460</td>
<td>0.00029460</td>
<td>2.10</td>
<td>0.1508</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>1</td>
<td>0.00003472</td>
<td>0.00003472</td>
<td>0.25</td>
<td>0.6202</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>1</td>
<td>0.00003165</td>
<td>0.00003165</td>
<td>0.23</td>
<td>0.6361</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>1</td>
<td>0.00011320</td>
<td>0.00011320</td>
<td>0.81</td>
<td>0.3716</td>
</tr>
<tr>
<td>surice_ca</td>
<td>1</td>
<td>0.00000004</td>
<td>0.00000004</td>
<td>0.00</td>
<td>0.9874</td>
</tr>
</tbody>
</table>

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-------------|--------------|----------------|---------|------|
| Intercept | 0.0532010010 | 0.04529009 | 1.17 | 0.2431|
| sex Female | 0.0030035827 | 0.00382264 | 0.79 | 0.4340|
| sex Male | 0.0000000000 | . | . | . |
| hdyn N | -.0029379734 | 0.00268219 | -1.10 | 0.2762|
| hdyn Y | 0.0000000000 | . | . | . |
| age | -.0003091911 | 0.00018693 | -1.65 | 0.1014|
| lrbf | -.002877171 | 0.01141886 | -2.00 | 0.0487|
| bsa_c | 0.0101445172 | 0.00759932 | 1.33 | 0.1851|
| MDRD_gfr | -.0000095515 | 0.00005390 | -0.18 | 0.8597|
| urine24_c | 0.0000004068 | 0.0000129 | 0.32 | 0.7523|
| esode_cc | 0.000287832 | 0.0001987 | 1.45 | 0.1508|
| lalbe_ca | 0.0014779169 | 0.00297251 | 0.50 | 0.6202|
The GLM Procedure

Dependent Variable: slope

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-------------|-----------|----------------|---------|------|---|
| lpldle_ca | -.0000174069 | 0.00003667 | -0.47 | 0.6361 |
| lphdle_ca | -.0001144179 | 0.00012744 | -0.90 | 0.3716 |
| surice_ca | 0.0000240488 | 0.00152314 | 0.02 | 0.9874 |

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.
<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.00054823</td>
<td>-0.00871512</td>
<td>0.00816690</td>
</tr>
<tr>
<td>2</td>
<td>0.00292561</td>
<td>0.00608509</td>
<td>-0.00315948</td>
</tr>
<tr>
<td>3</td>
<td>-0.01149919</td>
<td>-0.00346487</td>
<td>-0.00803432</td>
</tr>
<tr>
<td>4</td>
<td>-0.00598974</td>
<td>0.00296764</td>
<td>-0.00895738</td>
</tr>
<tr>
<td>5</td>
<td>-0.02571408</td>
<td>-0.00448448</td>
<td>-0.02122960</td>
</tr>
<tr>
<td>6</td>
<td>0.00998984</td>
<td>0.00534334</td>
<td>0.00464650</td>
</tr>
<tr>
<td>7</td>
<td>0.00056286</td>
<td>-0.00654312</td>
<td>0.00710598</td>
</tr>
<tr>
<td>8</td>
<td>0.00025030</td>
<td>-0.00069201</td>
<td>0.00094231</td>
</tr>
<tr>
<td>9</td>
<td>-0.00551384</td>
<td>0.00489930</td>
<td>-0.01041315</td>
</tr>
<tr>
<td>10</td>
<td>0.00922930</td>
<td>-0.00368070</td>
<td>0.01290999</td>
</tr>
<tr>
<td>11</td>
<td>-0.00957477</td>
<td>-0.00578307</td>
<td>-0.00379171</td>
</tr>
<tr>
<td>12</td>
<td>-0.00611059</td>
<td>-0.00328244</td>
<td>-0.00282815</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.00814027</td>
<td>0.00922102</td>
<td>-0.00108075</td>
</tr>
<tr>
<td>15</td>
<td>-0.01637867</td>
<td>0.00296513</td>
<td>-0.01934380</td>
</tr>
<tr>
<td>16</td>
<td>-0.00572799</td>
<td>-0.00511365</td>
<td>-0.00061435</td>
</tr>
<tr>
<td>17</td>
<td>-0.00814511</td>
<td>-0.00645299</td>
<td>-0.00169212</td>
</tr>
<tr>
<td>18</td>
<td>-0.00734971</td>
<td>-0.00121099</td>
<td>-0.00613873</td>
</tr>
<tr>
<td>19</td>
<td>0.00162651</td>
<td>-0.00462483</td>
<td>0.00625135</td>
</tr>
<tr>
<td>20</td>
<td>-0.00374234</td>
<td>0.00008825</td>
<td>-0.00383059</td>
</tr>
<tr>
<td>21</td>
<td>-0.02038315</td>
<td>-0.00101565</td>
<td>-0.01936750</td>
</tr>
<tr>
<td>22</td>
<td>-0.00429967</td>
<td>0.01476108</td>
<td>-0.01906076</td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.02180381</td>
<td>0.00402612</td>
<td>0.01777769</td>
</tr>
<tr>
<td>25</td>
<td>0.01609700</td>
<td>0.00780509</td>
<td>0.00829191</td>
</tr>
<tr>
<td>26</td>
<td>0.00081142</td>
<td>-0.01143284</td>
<td>0.01224425</td>
</tr>
<tr>
<td>27</td>
<td>-0.00001299</td>
<td>0.00817964</td>
<td>-0.00819263</td>
</tr>
<tr>
<td>28</td>
<td>-0.00833008</td>
<td>0.00150897</td>
<td>-0.00983905</td>
</tr>
<tr>
<td>29</td>
<td>0.02609646</td>
<td>0.01022635</td>
<td>0.01587011</td>
</tr>
<tr>
<td>30</td>
<td>-0.00657654</td>
<td>-0.01070975</td>
<td>0.00413321</td>
</tr>
<tr>
<td>31</td>
<td>-0.01659379</td>
<td>-0.00486347</td>
<td>-0.01173033</td>
</tr>
<tr>
<td>32</td>
<td>-0.01876476</td>
<td>-0.00925304</td>
<td>-0.00951172</td>
</tr>
<tr>
<td>33</td>
<td>-0.00261276</td>
<td>-0.00096468</td>
<td>-0.00164807</td>
</tr>
<tr>
<td>34</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.01913144</td>
<td>0.00468700</td>
<td>0.01444445</td>
</tr>
<tr>
<td>36</td>
<td>-0.00538996</td>
<td>-0.00470478</td>
<td>-0.00068519</td>
</tr>
<tr>
<td>37</td>
<td>-0.02123691</td>
<td>-0.00614146</td>
<td>-0.01509545</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>-0.02233969</td>
<td>-0.00945216</td>
<td>-0.01288752</td>
</tr>
<tr>
<td>39</td>
<td>-0.01656213</td>
<td>-0.00342945</td>
<td>-0.01313268</td>
</tr>
<tr>
<td>40</td>
<td>-0.01310466</td>
<td>-0.00765390</td>
<td>-0.00545076</td>
</tr>
<tr>
<td>41</td>
<td>-0.00898074</td>
<td>-0.00749860</td>
<td>-0.00148214</td>
</tr>
<tr>
<td>42</td>
<td>0.00837102</td>
<td>-0.00831234</td>
<td>0.01668335</td>
</tr>
<tr>
<td>43 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.00814227</td>
<td>-0.00156338</td>
<td>0.00970565</td>
</tr>
<tr>
<td>45</td>
<td>0.00000000</td>
<td>0.00145114</td>
<td>-0.00145114</td>
</tr>
<tr>
<td>46</td>
<td>0.00854107</td>
<td>0.00179345</td>
<td>0.00674763</td>
</tr>
<tr>
<td>47</td>
<td>-0.00182583</td>
<td>-0.00929388</td>
<td>0.00746805</td>
</tr>
<tr>
<td>48</td>
<td>0.01393470</td>
<td>0.00120143</td>
<td>0.01273327</td>
</tr>
<tr>
<td>49</td>
<td>-0.01744394</td>
<td>-0.00149825</td>
<td>-0.01594570</td>
</tr>
<tr>
<td>50</td>
<td>-0.00666220</td>
<td>0.00696448</td>
<td>-0.01362668</td>
</tr>
<tr>
<td>51</td>
<td>-0.00478661</td>
<td>-0.00288547</td>
<td>-0.00190115</td>
</tr>
<tr>
<td>52</td>
<td>0.00503453</td>
<td>0.00492690</td>
<td>0.00010763</td>
</tr>
<tr>
<td>53</td>
<td>0.00581401</td>
<td>0.00268592</td>
<td>0.00312809</td>
</tr>
<tr>
<td>54</td>
<td>0.02401121</td>
<td>0.00475304</td>
<td>0.01925816</td>
</tr>
<tr>
<td>55</td>
<td>0.00429873</td>
<td>0.0083558</td>
<td>0.00346315</td>
</tr>
<tr>
<td>56</td>
<td>0.01359046</td>
<td>0.00601417</td>
<td>0.00757629</td>
</tr>
<tr>
<td>57 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0.00542600</td>
<td>0.00011058</td>
<td>0.00531542</td>
</tr>
<tr>
<td>59</td>
<td>0.01912098</td>
<td>-0.00893287</td>
<td>0.02805386</td>
</tr>
<tr>
<td>60</td>
<td>-0.01361955</td>
<td>-0.00275054</td>
<td>-0.01086901</td>
</tr>
<tr>
<td>61</td>
<td>0.00381209</td>
<td>-0.00171460</td>
<td>0.00552669</td>
</tr>
<tr>
<td>62</td>
<td>-0.00366385</td>
<td>0.00369729</td>
<td>-0.00736114</td>
</tr>
<tr>
<td>63</td>
<td>-0.00705808</td>
<td>-0.00011799</td>
<td>-0.00694009</td>
</tr>
<tr>
<td>64</td>
<td>-0.01186838</td>
<td>-0.00355157</td>
<td>-0.00831681</td>
</tr>
<tr>
<td>65</td>
<td>0.02576693</td>
<td>-0.00096614</td>
<td>0.02673307</td>
</tr>
<tr>
<td>66</td>
<td>0.01648835</td>
<td>0.01025321</td>
<td>0.00623514</td>
</tr>
<tr>
<td>67</td>
<td>-0.00879163</td>
<td>-0.00000714</td>
<td>-0.00878449</td>
</tr>
<tr>
<td>68</td>
<td>-0.01120477</td>
<td>0.00092790</td>
<td>-0.01213267</td>
</tr>
<tr>
<td>69</td>
<td>0.00882574</td>
<td>0.00138241</td>
<td>0.00744333</td>
</tr>
<tr>
<td>70 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>-0.00220654</td>
<td>0.00109569</td>
<td>-0.00330223</td>
</tr>
<tr>
<td>72</td>
<td>0.00888465</td>
<td>-0.00480947</td>
<td>0.01369412</td>
</tr>
<tr>
<td>73</td>
<td>-0.03660110</td>
<td>-0.01133616</td>
<td>-0.02526494</td>
</tr>
<tr>
<td>74</td>
<td>0.00530223</td>
<td>-0.00102883</td>
<td>0.00633106</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>-0.00378696</td>
<td>-0.00538455</td>
<td>0.00159760</td>
</tr>
<tr>
<td>76 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>0.00506953</td>
<td>0.00213149</td>
<td>0.00293804</td>
</tr>
<tr>
<td>78</td>
<td>0.02454951</td>
<td>-0.00175483</td>
<td>0.02630434</td>
</tr>
<tr>
<td>79</td>
<td>0.00277202</td>
<td>-0.00398961</td>
<td>0.00676163</td>
</tr>
<tr>
<td>80</td>
<td>0.00272877</td>
<td>0.00385040</td>
<td>-0.00112163</td>
</tr>
<tr>
<td>81 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>0.00557968</td>
<td>0.00494541</td>
<td>0.00063427</td>
</tr>
<tr>
<td>84</td>
<td>0.01788276</td>
<td>0.000724515</td>
<td>0.01063761</td>
</tr>
<tr>
<td>85</td>
<td>-0.01416707</td>
<td>-0.00581851</td>
<td>-0.00834856</td>
</tr>
<tr>
<td>86</td>
<td>-0.01168912</td>
<td>-0.00278183</td>
<td>-0.00890729</td>
</tr>
<tr>
<td>87 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>-0.03068621</td>
<td>-0.00287445</td>
<td>-0.02781175</td>
</tr>
<tr>
<td>89</td>
<td>-0.01232418</td>
<td>-0.00491165</td>
<td>-0.00741253</td>
</tr>
<tr>
<td>90</td>
<td>0.00000000</td>
<td>-0.00276933</td>
<td>0.00276933</td>
</tr>
<tr>
<td>91 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>0.00808567</td>
<td>-0.00099777</td>
<td>0.00818544</td>
</tr>
<tr>
<td>93</td>
<td>-0.00341060</td>
<td>0.00015244</td>
<td>-0.00356304</td>
</tr>
<tr>
<td>94 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>0.00668017</td>
<td>-0.00400104</td>
<td>0.01068121</td>
</tr>
<tr>
<td>96</td>
<td>-0.01072388</td>
<td>-0.00391562</td>
<td>-0.00680826</td>
</tr>
<tr>
<td>97</td>
<td>0.00398322</td>
<td>-0.00261287</td>
<td>0.00659609</td>
</tr>
<tr>
<td>98</td>
<td>-0.00830219</td>
<td>-0.00936517</td>
<td>0.00106298</td>
</tr>
<tr>
<td>99</td>
<td>0.00428305</td>
<td>-0.00973531</td>
<td>0.01401836</td>
</tr>
<tr>
<td>100</td>
<td>0.00251007</td>
<td>0.00172608</td>
<td>0.00078399</td>
</tr>
<tr>
<td>101</td>
<td>-0.00237457</td>
<td>-0.00558408</td>
<td>0.00320950</td>
</tr>
<tr>
<td>102</td>
<td>0.00720762</td>
<td>0.00311474</td>
<td>0.00409288</td>
</tr>
<tr>
<td>103 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>0.01271372</td>
<td>0.00090675</td>
<td>0.01180697</td>
</tr>
<tr>
<td>105</td>
<td>0.01429699</td>
<td>-0.00000660</td>
<td>0.01430359</td>
</tr>
<tr>
<td>106</td>
<td>0.00354145</td>
<td>-0.00592963</td>
<td>0.00947108</td>
</tr>
<tr>
<td>107 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>-0.01812466</td>
<td>-0.00077808</td>
<td>-0.01734659</td>
</tr>
<tr>
<td>109 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 *</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>112 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>-0.01925310</td>
<td>-0.00484336</td>
<td>-0.01440974</td>
</tr>
<tr>
<td>114</td>
<td>-0.00933022</td>
<td>-0.01119642</td>
<td>0.00186620</td>
</tr>
<tr>
<td>115 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>-0.00727888</td>
<td>-0.00244173</td>
<td>-0.00483715</td>
</tr>
<tr>
<td>118</td>
<td>0.01160854</td>
<td>-0.00268926</td>
<td>0.01429780</td>
</tr>
<tr>
<td>119</td>
<td>0.00115646</td>
<td>-0.00839285</td>
<td>0.00954931</td>
</tr>
<tr>
<td>120</td>
<td>-0.01807265</td>
<td>0.00253518</td>
<td>-0.02060783</td>
</tr>
<tr>
<td>121</td>
<td>-0.00246829</td>
<td>-0.00198106</td>
<td>-0.0048723</td>
</tr>
<tr>
<td>122 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>0.00991375</td>
<td>0.00097938</td>
<td>0.00893437</td>
</tr>
<tr>
<td>124</td>
<td>0.01521740</td>
<td>0.00726102</td>
<td>0.00795638</td>
</tr>
<tr>
<td>125 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>-0.00076953</td>
<td>0.00250262</td>
<td>-0.00327215</td>
</tr>
<tr>
<td>127</td>
<td>-0.01035746</td>
<td>-0.00134705</td>
<td>-0.00901041</td>
</tr>
<tr>
<td>128 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>0.00255263</td>
<td>0.00180457</td>
<td>0.00074805</td>
</tr>
<tr>
<td>130 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>-0.01168877</td>
<td>-0.00253124</td>
<td>-0.00915752</td>
</tr>
</tbody>
</table>

* Observation was not used in this analysis

Sum of Residuals	0.00000000
Sum of Squared Residuals	0.01320105
Sum of Squared Residuals - Error SS	-0.00000000
First Order Autocorrelation	0.10116774
Durbin-Watson D	1.78625949
Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>lmrrcvs</td>
</tr>
<tr>
<td>Covariance Structure</td>
<td>Variance Components</td>
</tr>
<tr>
<td>Subject Effect</td>
<td>pkdid</td>
</tr>
<tr>
<td>Estimation Method</td>
<td>ML</td>
</tr>
<tr>
<td>Residual Variance Method</td>
<td>Profile</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
<td>Model-Based</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
<td>Containment</td>
</tr>
</tbody>
</table>

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>131</td>
<td>200922 201800 201877 203328 204555 205758 206816 208280 208324 209281 213454 214376 215052 216086 220068 222334 223354 223635 224502 226640 229428 229733 232174 234053 234650 234795 235752 236202 237192 239960 241501 242715 243560 243738 244111 244831 245990 246620 247880 248712 252086 255765 256171 259940 263617 264225 264348 265171 268455 271043 271460 271662 271684 273214 273225 277490 281000 281977 283722 283935 285601 286095 290336 292362 293317 293598 294105 294511 295106 295940 298515 299663 300641 300696 300911 301157 301372 303868 304860 306546 312317 313195 313307 313893 316110 318562 320182 320957 321611 323837 325290 327055 327325 327933 331318 333524 334672 336167 336843 337315 342131 343097 343233 354494 358230 359308 364664 367836 368973 369941 370942 371021 374068 374687 376004 376252 380166 380998 383193 383744 385151 386040 386488 386758 387658 392316 393936 394588 397661 397931</td>
</tr>
</tbody>
</table>

Dimensions

Covariance Parameters	3
Columns in X	2
Columns in Z Per Subject	2
Subjects	131
Max Obs Per Subject	4
Observations Used	445
Observations Not Used	79
Total Observations	524

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>582.08207976</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-609.86161010</td>
<td>0.03886787</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-645.70201513</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-664.82165145</td>
<td>0.00726681</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-671.37595557</td>
<td>0.00142315</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-672.57663612</td>
<td>0.00008120</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>-672.63958959</td>
<td>0.00000033</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-672.63983636</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

Convergence criteria met.

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>pkdid</td>
<td>0.2194</td>
</tr>
<tr>
<td>visc</td>
<td>pkdid</td>
<td>0.000237</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>0.002085</td>
</tr>
</tbody>
</table>

Fit Statistics

- **-2 Log Likelihood**: -672.6
- **AIC (smaller is better)**: -662.6
- **AICC (smaller is better)**: -662.5
- **BIC (smaller is better)**: -648.3

Solution for Fixed Effects

| Effect | Estimate | Standard Error | DF | t Value | Pr > |t| |
|--------|----------|----------------|----|---------|------|---|
| Intercept | 2.5073 | 0.04107 | 130 | 61.05 | <.0001 |
| visc | 0.05247 | 0.002518 | 125 | 20.84 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|---------|------|---|
| Intercept | 200922 | -0.00815 | 0.05028 | 188 | -0.16 | 0.8713 |
| Intercept | 201800 | 0.8440 | 0.05045 | 188 | 16.73 | <.0001 |
| Intercept | 201877 | 0.03483 | 0.05031 | 188 | 0.69 | 0.4896 |
| Intercept | 203328 | 0.2675 | 0.05074 | 188 | 5.27 | <.0001 |
| Intercept | 203328 | -0.01299 | 0.01216 | 188 | -1.07 | 0.2868 |
| Intercept | 204555 | 0.2475 | 0.05138 | 188 | 4.82 | <.0001 |
| Intercept | 205758 | 0.2272 | 0.05054 | 188 | 4.49 | <.0001 |
| Intercept | 206816 | 0.1637 | 0.05056 | 188 | 3.24 | 0.0014 |
| Intercept | 206816 | -0.01366 | 0.01391 | 188 | -0.98 | 0.3275 |
| Intercept | 208280 | -0.2281 | 0.05033 | 188 | -4.53 | <.0001 |
| Intercept | 208280 | 0.001357 | 0.01237 | 188 | -0.12 | 0.9092 |
| Intercept | 208324 | -0.02960 | 0.05030 | 188 | -0.59 | 0.5568 |
| Intercept | 208324 | -0.00524 | 0.01231 | 188 | -0.43 | 0.6710 |
| Intercept | 209281 | -0.1184 | 0.05067 | 188 | -2.34 | 0.0205 |
| Intercept | 209281 | -0.00105 | 0.01395 | 188 | -0.08 | 0.9392 |
| Intercept | 213454 | -0.5656 | 0.05047 | 188 | -11.21 | <.0001 |
| Intercept | 213454 | 0.007326 | 0.01210 | 188 | 0.63 | 0.5454 |
| Intercept | 214376 | -0.1088 | 0.05061 | 188 | -2.15 | 0.0329 |
| Intercept | 214376 | 0.006877 | 0.01391 | 188 | 0.49 | 0.6216 |
| Intercept | 215052 | -0.2536 | 0.05168 | 188 | -4.91 | <.0001 |
| Intercept | 215052 | 0.02216 | 0.01192 | 188 | 1.86 | 0.0647 |
| Intercept | 216086 | 0.7445 | 0.05037 | 188 | 14.78 | <.0001 |
| Intercept | 216086 | 0.002307 | 0.01235 | 188 | 0.19 | 0.8520 |
| Intercept | 220068 | 0.8391 | 0.05062 | 188 | 16.58 | <.0001 |
| Intercept | 220068 | -0.00050 | 0.01389 | 188 | -0.04 | 0.9715 |
| Intercept | 223343 | 0.2255 | 0.05034 | 188 | 4.48 | <.0001 |
| Intercept | 223343 | -0.00932 | 0.01216 | 188 | -0.77 | 0.4444 |
| Intercept | 223534 | 0.2876 | 0.05065 | 188 | 5.68 | <.0001 |
| Intercept | 223534 | 0.000507 | 0.01386 | 188 | 0.04 | 0.9708 |
| Intercept | 223635 | -0.3800 | 0.05088 | 188 | -7.47 | <.0001 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|----------|----|---------|-------|-----|
| visc | 223635 | 0.000304 | 0.01345 | 188| 0.02 | 0.9820|
| Intercept | 224502 | -0.06916 | 0.05110 | 188| -1.35 | 0.1775|
| visc | 224502 | 0.008069 | 0.01239 | 188| 0.65 | 0.5157|
| Intercept | 226640 | 0.2299 | 0.05032 | 188| 4.57 | <.0001|
| visc | 226640 | -0.00472 | 0.01229 | 188| -0.38 | 0.7012|
| Intercept | 229428 | 0.1169 | 0.05056 | 188| 2.31 | 0.0219|
| visc | 229428 | -0.00292 | 0.01389 | 188| -0.21 | 0.8337|
| Intercept | 229733 | 0.2651 | 0.05048 | 188| 5.25 | <.0001|
| visc | 229733 | 0.004439 | 0.01386 | 188| 0.32 | 0.7491|
| Intercept | 232174 | -0.2406 | 0.05098 | 188| -4.72 | <.0001|
| visc | 232174 | -0.00480 | 0.01363 | 188| -0.35 | 0.7250|
| Intercept | 234503 | 0.4794 | 0.05025 | 188| 9.54 | <.0001|
| visc | 234503 | 0.01010 | 0.01235 | 188| 0.82 | 0.4145|
| Intercept | 234650 | 0.1259 | 0.05014 | 188| 2.51 | 0.0129|
| visc | 234650 | 0.003327 | 0.01233 | 188| 0.27 | 0.7876|
| Intercept | 234795 | -0.7775 | 0.06099 | 188| -12.75 | <.0001|
| visc | 234795 | 0.001540 | 0.01540 | 188| 0.00 | 1.0000|
| Intercept | 235752 | -0.06279 | 0.05192 | 188| -1.21 | 0.2281|
| visc | 235752 | 0.003671 | 0.01262 | 188| 0.29 | 0.7714|
| Intercept | 236202 | 0.6394 | 0.05029 | 188| 12.71 | <.0001|
| visc | 236202 | -0.00725 | 0.01217 | 188| -0.60 | 0.5517|
| Intercept | 237192 | 0.4652 | 0.05037 | 188| 9.23 | <.0001|
| visc | 237192 | 0.01289 | 0.01217 | 188| 1.06 | 0.2913|
| Intercept | 239960 | 0.2352 | 0.05063 | 188| 4.64 | <.0001|
| visc | 239960 | -0.00500 | 0.01383 | 188| -0.36 | 0.7181|
| Intercept | 241501 | -1.1674 | 0.05065 | 188| -23.05 | <.0001|
| visc | 241501 | 0.001038 | 0.01114 | 188| 0.09 | 0.9259|
| Intercept | 242715 | -0.1563 | 0.05050 | 188| -3.09 | 0.0023|
| visc | 242715 | -0.00704 | 0.01217 | 188| -0.58 | 0.5634|
| Intercept | 243560 | -0.7710 | 0.05061 | 188| -15.23 | <.0001|
| visc | 243560 | 0.002119 | 0.01385 | 188| 0.15 | 0.8786|
| Intercept | 243738 | 0.4945 | 0.05054 | 188| 9.79 | <.0001|
| visc | 243738 | 0.003373 | 0.01387 | 188| 0.24 | 0.8082|
| Intercept | 244111 | -0.1506 | 0.05052 | 188| -2.98 | 0.0032|
| visc | 244111 | 0.01915 | 0.01183 | 188| 1.62 | 0.1072|
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|-----------------------|----------|---------|---------|---------|------|----|
| Intercept | 244831 | -0.4521 | 0.05084 | 188 | -8.89 | <.0001 |
| vисc | 244831 | 0.01137 | 0.01370 | 188 | 0.83 | 0.4076 |
| Intercept | 245990 | -0.9176 | 0.05050 | 188 | -18.17 | <.0001 |
| vисc | 245990 | -0.00745 | 0.01395 | 188 | -0.53 | 0.5937 |
| Intercept | 246620 | -0.6115 | 0.05053 | 188 | -12.09 | <.0001 |
| vисc | 246620 | -0.00918 | 0.01217 | 188 | -0.75 | 0.4515 |
| Intercept | 247880 | -0.4377 | 0.05053 | 188 | -8.66 | <.0001 |
| vисc | 247880 | -0.00718 | 0.01184 | 188 | -0.61 | 0.5453 |
| Intercept | 248712 | -0.1763 | 0.05065 | 188 | -3.48 | 0.0006 |
| vисc | 248712 | -0.00180 | 0.01216 | 188 | -0.15 | 0.8824 |
| Intercept | 252086 | 0.2307 | 0.05154 | 188 | 4.48 | <.0001 |
| vисc | 252086 | -0.01049 | 0.01237 | 188 | -0.85 | 0.3976 |
| Intercept | 255765 | -0.1491 | 0.05033 | 188 | -2.96 | 0.0034 |
| vисc | 255765 | 0.007243 | 0.01232 | 188 | 0.59 | 0.5572 |
| Intercept | 256171 | -0.2046 | 0.04993 | 188 | -4.10 | <.0001 |
| vисc | 256171 | 0.008280 | 0.01252 | 188 | 0.66 | 0.5091 |
| Intercept | 258950 | 0.3003 | 0.05256 | 188 | 5.71 | <.0001 |
| vисc | 258950 | 0.004819 | 0.01496 | 188 | 0.32 | 0.7477 |
| Intercept | 259940 | -0.3075 | 0.06099 | 188 | -5.04 | <.0001 |
| vисc | 259940 | 0 | 0.01540 | 188 | 0.00 | 1.0000 |
| Intercept | 263617 | -0.3318 | 0.05043 | 188 | -6.58 | <.0001 |
| vисc | 263617 | 0.009178 | 0.01228 | 188 | 0.75 | 0.4556 |
| Intercept | 264225 | 0.01735 | 0.05038 | 188 | 0.34 | 0.7309 |
| vисc | 264225 | 0.003884 | 0.01213 | 188 | 0.32 | 0.7491 |
| Intercept | 264348 | -0.1532 | 0.05023 | 188 | -3.05 | 0.0026 |
| vисc | 264348 | 0.01019 | 0.01232 | 188 | 0.83 | 0.4095 |
| Intercept | 265171 | -1.3542 | 0.05062 | 188 | -26.75 | <.0001 |
| vисc | 265171 | -0.01781 | 0.01385 | 188 | -1.29 | 0.2001 |
| Intercept | 268455 | 0.6082 | 0.05065 | 188 | 12.01 | <.0001 |
| vисc | 268455 | -0.00689 | 0.01218 | 188 | -0.57 | 0.5721 |
| Intercept | 271043 | -0.3399 | 0.05036 | 188 | -6.75 | <.0001 |
| vисc | 271043 | -0.00346 | 0.01391 | 188 | -0.25 | 0.8041 |
| Intercept | 271460 | -0.5258 | 0.05027 | 188 | -10.46 | <.0001 |
| vисc | 271460 | 0.01846 | 0.01229 | 188 | 1.50 | 0.1348 |
| Intercept | 271662 | 0.4328 | 0.05248 | 188 | 8.25 | <.0001 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|----------|----|---------|------|----|
| visc | 271662 | -0.00032 | 0.01502 | 188 | -0.02 | 0.9831 |
| Intercept | 271684 | -0.3241 | 0.05075 | 188 | -6.39 | <.0001 |
| visc | 271684 | 0.004810 | 0.01373 | 188 | 0.35 | 0.7265 |
| Intercept | 273214 | 0.2275 | 0.04991 | 188 | 4.56 | <.0001 |
| visc | 273214 | 0.007668 | 0.01253 | 188 | 0.61 | 0.5412 |
| Intercept | 273225 | 0.3871 | 0.05392 | 188 | 7.18 | <.0001 |
| visc | 273225 | 0.005717 | 0.01378 | 188 | 0.41 | 0.6786 |
| Intercept | 277490 | 0.05140 | 0.05254 | 188 | 0.98 | 0.3291 |
| visc | 277490 | 0.009594 | 0.01497 | 188 | 0.64 | 0.5224 |
| Intercept | 281000 | 0.03718 | 0.05020 | 188 | 0.74 | 0.4599 |
| visc | 281000 | -0.00119 | 0.01233 | 188 | -0.10 | 0.9233 |
| Intercept | 281977 | 0.2797 | 0.05038 | 188 | 5.55 | <.0001 |
| visc | 281977 | 0.006860 | 0.01225 | 188 | 0.56 | 0.5761 |
| Intercept | 283722 | 0.1549 | 0.05042 | 188 | 3.07 | 0.0024 |
| visc | 283722 | -0.00542 | 0.01396 | 188 | -0.39 | 0.6981 |
| Intercept | 283935 | 0.2108 | 0.05087 | 188 | 4.14 | <.0001 |
| visc | 283935 | 0.000103 | 0.01366 | 188 | 0.01 | 0.9940 |
| Intercept | 285601 | 0.7911 | 0.05044 | 188 | 15.68 | <.0001 |
| visc | 285601 | -0.01177 | 0.01226 | 188 | -0.96 | 0.3382 |
| Intercept | 286095 | -0.04440 | 0.05033 | 188 | -0.88 | 0.3788 |
| visc | 286095 | -0.00881 | 0.01226 | 188 | -0.72 | 0.4734 |
| Intercept | 290336 | -0.2277 | 0.05064 | 188 | -4.50 | <.0001 |
| visc | 290336 | -0.00465 | 0.01216 | 188 | -0.38 | 0.7024 |
| Intercept | 292362 | 0.5971 | 0.05084 | 188 | 11.74 | <.0001 |
| visc | 292362 | 0.01206 | 0.01205 | 188 | 1.00 | 0.3178 |
| Intercept | 293317 | 0.6890 | 0.05033 | 188 | 13.69 | <.0001 |
| visc | 293317 | 0.003908 | 0.01382 | 188 | 0.28 | 0.7776 |
| Intercept | 293598 | 0.7876 | 0.05081 | 188 | 15.50 | <.0001 |
| visc | 293598 | -0.00824 | 0.01382 | 188 | -0.60 | 0.5517 |
| Intercept | 294105 | 0.2900 | 0.05270 | 188 | 5.50 | <.0001 |
| visc | 294105 | 0.003386 | 0.01483 | 188 | 0.23 | 0.8197 |
| Intercept | 294511 | -0.2026 | 0.05071 | 188 | -4.00 | <.0001 |
| visc | 294511 | 0.01149 | 0.01380 | 188 | 0.83 | 0.4060 |
| Intercept | 295106 | -0.3070 | 0.05039 | 188 | -6.09 | <.0001 |
| visc | 295106 | -0.00939 | 0.01202 | 188 | -0.78 | 0.4357 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|---------|------------------------|----------|---------|---------|---------|-------|----|
| Intercept | 295940 | 0.4064 | 0.05018 | 188 | 8.10 | <.0001 |
| intercept | 295940 | 0.003732 | 0.01218 | 188 | 0.31 | 0.7596 |
| Intercept | 298515 | -0.4988 | 0.05050 | 188 | -9.88 | <.0001 |
| Intercept | 299663 | -0.4757 | 0.05049 | 188 | -9.42 | <.0001 |
| Intercept | 300641 | -0.3734 | 0.05049 | 188 | -7.40 | <.0001 |
| Intercept | 300696 | 0.1580 | 0.05034 | 188 | 3.14 | 0.0020 |
| Intercept | 300911 | 0.3494 | 0.05054 | 188 | 6.91 | <.0001 |
| Intercept | 301157 | -0.00402 | 0.01391 | 188 | -0.29 | 0.7731 |
| Intercept | 301372 | -0.00948 | 0.01230 | 188 | -0.77 | 0.4415 |
| Intercept | 301372 | -0.02217 | 0.05129 | 188 | 0.43 | 0.6660 |
| Intercept | 303868 | -1.0307 | 0.05039 | 188 | -20.45 | <.0001 |
| Intercept | 304860 | 0.4560 | 0.05023 | 188 | 9.08 | <.0001 |
| Intercept | 305464 | -0.3057 | 0.05041 | 188 | -6.06 | <.0001 |
| Intercept | 305464 | -0.00917 | 0.01225 | 188 | -0.71 | 0.4821 |
| Intercept | 312317 | -0.3355 | 0.05049 | 188 | -6.65 | <.0001 |
| Intercept | 313195 | -0.00817 | 0.01230 | 188 | -0.67 | 0.4982 |
| Intercept | 313195 | -0.00068 | 0.01229 | 188 | -0.05 | 0.9580 |
| Intercept | 313307 | 0.08372 | 0.05029 | 188 | 1.66 | 0.0977 |
| Intercept | 313893 | 0.01237 | 0.05030 | 188 | 0.26 | 0.7934 |
| Intercept | 316110 | -0.2554 | 0.05062 | 188 | -5.08 | <.0001 |
| Intercept | 316110 | -0.01012 | 0.01223 | 188 | -0.82 | 0.4128 |
| Intercept | 318562 | -0.4542 | 0.05029 | 188 | -9.03 | <.0001 |
| Intercept | 318562 | -0.00765 | 0.01244 | 188 | -0.61 | 0.5393 |
| Intercept | 320182 | 0.2126 | 0.05062 | 188 | 4.20 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|------|---|
| visc | 320182 | -0.00973 | 0.01391 | 188 | -0.70 | 0.4850 |
| Intercept | 320957 | -0.8981 | 0.05051 | 188 | -17.78 | <.0001 |
| visc | 320957 | -0.00377 | 0.01393 | 188 | -0.27 | 0.7868 |
| Intercept | 321611 | 0.5626 | 0.06099 | 188 | 9.22 | <.0001 |
| visc | 321611 | 0 | 0.01540 | 188 | 0.00 | 1.0000 |
| Intercept | 323837 | -0.00377 | 0.01393 | 188 | -0.27 | 0.7868 |
| visc | 323837 | 0.002670 | 0.01218 | 188 | 0.22 | 0.8267 |
| Intercept | 325456 | 0.3079 | 0.05023 | 188 | 6.13 | <.0001 |
| Intercept | 327055 | -0.8981 | 0.05051 | 188 | -17.78 | <.0001 |
| Intercept | 327325 | -0.1510 | 0.05052 | 188 | -2.99 | 0.0032 |
| visc | 327325 | -0.00377 | 0.01393 | 188 | -0.27 | 0.7868 |
| Intercept | 327933 | -0.2582 | 0.05027 | 188 | -5.14 | <.0001 |
| visc | 327933 | 0.009005 | 0.01230 | 188 | 0.73 | 0.4652 |
| Intercept | 331318 | -0.8937 | 0.05034 | 188 | -17.75 | <.0001 |
| visc | 331318 | -0.01689 | 0.01230 | 188 | -1.37 | 0.1714 |
| Intercept | 333524 | 0.8120 | 0.05054 | 188 | 16.06 | <.0001 |
| visc | 333524 | -0.00154 | 0.01388 | 188 | -0.11 | 0.9116 |
| Intercept | 334672 | 0.4700 | 0.05048 | 188 | 9.31 | <.0001 |
| visc | 334672 | -0.00930 | 0.01182 | 188 | -0.79 | 0.4323 |
| Intercept | 336167 | -0.07003 | 0.04988 | 188 | -1.40 | 0.1619 |
| visc | 336167 | -0.01386 | 0.01278 | 188 | -1.08 | 0.2797 |
| Intercept | 336843 | -0.05762 | 0.05029 | 188 | -1.15 | 0.2534 |
| visc | 336843 | -0.00631 | 0.01229 | 188 | -0.51 | 0.6083 |
| Intercept | 337315 | -0.07088 | 0.05026 | 188 | -1.41 | 0.1601 |
| visc | 337315 | 0.001812 | 0.01233 | 188 | 0.15 | 0.8833 |
| Intercept | 342131 | 0.01995 | 0.05060 | 188 | 0.39 | 0.6939 |
| visc | 342131 | 0.007216 | 0.01356 | 188 | 0.53 | 0.5952 |
| Intercept | 343097 | 0.4531 | 0.05034 | 188 | 9.00 | <.0001 |
| visc | 343097 | 0.01575 | 0.01227 | 188 | 1.28 | 0.2007 |
| Intercept | 343233 | 0.2632 | 0.05024 | 188 | 5.24 | <.0001 |
| visc | 343233 | 0.002793 | 0.01242 | 188 | 0.22 | 0.8224 |
| Intercept | 354494 | -0.1451 | 0.05382 | 188 | -2.70 | 0.0077 |
| visc | 354494 | 0.000025 | 0.01386 | 188 | 0.00 | 0.9986 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|---------|-------|---|
| Intercept | 358230 | -0.00034 | 0.05036 | 188 | -0.01 | 0.9947 |
| Visc | 358230 | 0.001356 | 0.01233 | 188 | 0.11 | 0.9126 |
| Intercept | 359308 | 0.05954 | 0.05034 | 188 | 1.18 | 0.2384 |
| Visc | 359308 | -0.00140 | 0.01227 | 188 | -0.11 | 0.9094 |
| Intercept | 364664 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| Visc | 364664 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 367836 | 0.5933 | 0.05041 | 188 | 11.77 | <.0001 |
| Visc | 367836 | -0.00140 | 0.01227 | 188 | -0.11 | 0.9094 |
| Intercept | 368973 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| Visc | 368973 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 370942 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| Visc | 370942 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 371021 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| Visc | 371021 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 374068 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| Visc | 374068 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 374687 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| Visc | 374687 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 376004 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| Visc | 376004 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 376252 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| Visc | 376252 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 380166 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| Visc | 380166 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 380998 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| Visc | 380998 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 383193 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| Visc | 383193 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 383744 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| Visc | 383744 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 385151 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| Visc | 385151 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 386040 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|------|---|
| visc | 386040 | 0.006852 | 0.01218 | 188 | 0.56 | 0.5745 |
| Intercept | 386488 | 0.2381 | 0.05059 | 188 | 4.71 | <.0001 |
| visc | 386488 | 0.001169 | 0.01385 | 188 | 0.08 | 0.9328 |
| Intercept | 386758 | 0.4861 | 0.05038 | 188 | 9.65 | <.0001 |
| visc | 386758 | 0.000211 | 0.01216 | 188 | 0.02 | 0.9862 |
| Intercept | 387658 | 0.3785 | 0.05037 | 188 | 7.51 | <.0001 |
| visc | 387658 | 0.004161 | 0.01221 | 188 | 0.34 | 0.7336 |
| Intercept | 392316 | 0.2511 | 0.05031 | 188 | 4.99 | <.0001 |
| visc | 392316 | -0.00501 | 0.01223 | 188 | -0.41 | 0.6828 |
| Intercept | 393936 | 0.1914 | 0.05056 | 188 | 3.79 | 0.0002 |
| visc | 393936 | -0.00128 | 0.01389 | 188 | -0.09 | 0.9266 |
| Intercept | 394588 | 0.6187 | 0.05043 | 188 | 12.27 | <.0001 |
| visc | 394588 | 0.000352 | 0.01394 | 188 | 0.03 | 0.9799 |
| Intercept | 397661 | 0.5058 | 0.05029 | 188 | 10.06 | <.0001 |
| visc | 397661 | -0.00750 | 0.01229 | 188 | -0.61 | 0.5426 |
| Intercept | 397931 | 0.09715 | 0.06099 | 188 | 1.59 | 0.1129 |
| visc | 397931 | 0 | 0.01540 | 188 | 0.00 | 1.0000 |

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>1</td>
<td>125</td>
<td>434.15</td>
<td><.0001</td>
</tr>
</tbody>
</table>
The MEANS Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>N</th>
<th>Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>Participant/ID Number</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>slope</td>
<td>Std Err Pred</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>StlSE</td>
<td>PCC/Number</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pccn</td>
<td>Visit/Date/Number (1)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>dvdate</td>
<td>Visit/Date/Date (1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>vis</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>urine24_c</td>
<td>24hr Urine (dL/24hr)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>surice_ca</td>
<td>Serum:Uric Acid (mg/dL) (c)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>albe_ca</td>
<td>Urine:Albumin Excr (mg/24hr) (c)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ecitre_ca</td>
<td>Urine:Citrate Excr (mg/24hr) (c)</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>esode_cc</td>
<td>Urine:Sodium Excr (mEq/24h) (c)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>xbdvdate</td>
<td>Visit/Date</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cic</td>
<td>Correct Iothalamate Clear # 10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>bsa_c</td>
<td>BSA (c)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>hdyen</td>
<td>Hypertension yes/no # 12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bmi_c</td>
<td>BMI (c)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>age</td>
<td>Age of participant</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>MDRD GFR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mrskvs</td>
<td>MR K Volt/Sum Ster</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mrrcvs</td>
<td>MR C Volt/Sum Reg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>visc</td>
<td>Relative Visit</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mrctps</td>
<td>Percent MR Cyst Vol</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lmrskvs</td>
<td>Log10 MR K Volt/Sum Ster</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lmrrcvs</td>
<td>Log10 MR C Volt/Sum Reg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>Log10 Urine:Albumin Excr (mg/24hr) (c)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>lcreditre_ca</td>
<td>Log10 Urine:Citrate Excr (mg/24hr) (c)</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>lMDRD_GFR</td>
<td>Log10 MDRD GFR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lrbf</td>
<td>Log10 Renal Blood Flow Corrected for BSA</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>lrvr</td>
<td>Log10 RVR corrected for BSA</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>lrfp</td>
<td>Log10 Remal Plasma Flow</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>lff</td>
<td>Log10 Filtration Fraction</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>race</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sex</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ind1_cic</td>
<td>CIC < or >= 100?</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ind2_cic</td>
<td>CIC < or >= 85?</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>genotype</td>
<td>Gene Type</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Avgsystol</td>
<td>Average Systolic BP over years</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Avgdiastol</td>
<td>Average Diastolic BP over years</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The GLM Procedure

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>2</td>
<td>Female Male</td>
</tr>
<tr>
<td>hdyn</td>
<td>2</td>
<td>N Y</td>
</tr>
</tbody>
</table>

NOTE: Due to missing values, only 106 observations can be used in this analysis.
The GLM Procedure

Dependent Variable: slope

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12</td>
<td>0.00144794</td>
<td>0.00012066</td>
<td>1.93</td>
<td>0.0400</td>
</tr>
<tr>
<td>Error</td>
<td>93</td>
<td>0.00580703</td>
<td>0.00006244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>105</td>
<td>0.00725497</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coeff Var</th>
<th>Root MSE</th>
<th>slope Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.199579</td>
<td>22823.52</td>
<td>0.007902</td>
<td>0.000035</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>0.000002404</td>
<td>0.00002404</td>
<td>0.39</td>
<td>0.5364</td>
</tr>
<tr>
<td>hdyn</td>
<td>1</td>
<td>0.000000249</td>
<td>0.00000249</td>
<td>0.04</td>
<td>0.8422</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>0.000006153</td>
<td>0.000006153</td>
<td>0.99</td>
<td>0.3234</td>
</tr>
<tr>
<td>lrbf</td>
<td>1</td>
<td>0.000000788</td>
<td>0.000000788</td>
<td>0.13</td>
<td>0.7232</td>
</tr>
<tr>
<td>bsa_c</td>
<td>1</td>
<td>0.000022726</td>
<td>0.000022726</td>
<td>3.64</td>
<td>0.0595</td>
</tr>
<tr>
<td>cic</td>
<td>1</td>
<td>0.000006141</td>
<td>0.000006141</td>
<td>0.98</td>
<td>0.3239</td>
</tr>
<tr>
<td>urine24_c</td>
<td>1</td>
<td>0.000001687</td>
<td>0.000001687</td>
<td>0.27</td>
<td>0.6044</td>
</tr>
<tr>
<td>esode_cc</td>
<td>1</td>
<td>0.000000994</td>
<td>0.000000994</td>
<td>0.01</td>
<td>0.9029</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>1</td>
<td>0.000029555</td>
<td>0.000029555</td>
<td>0.47</td>
<td>0.4932</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>1</td>
<td>0.00000540</td>
<td>0.00000540</td>
<td>0.09</td>
<td>0.7694</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>1</td>
<td>0.00000353</td>
<td>0.00000353</td>
<td>0.06</td>
<td>0.8126</td>
</tr>
<tr>
<td>surice_ca</td>
<td>1</td>
<td>0.00015494</td>
<td>0.00015494</td>
<td>2.48</td>
<td>0.1186</td>
</tr>
</tbody>
</table>

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-----------------|----------|----------------|--------|------|---|
| Intercept | -.0365917694 | 0.03020469 | -1.21 | 0.2288 |
| sex Female | 0.0015469251 | 0.00249305 | 0.62 | 0.5364 |
| sex Male | 0.0000000000 | . | . | . |
| hdyn N | 0.0003543696 | 0.00177457 | 0.20 | 0.8422 |
| hdyn Y | 0.0000000000 | . | . | . |
| age | -.0001158634 | 0.00011672 | -0.99 | 0.3234 |
| lrbf | 0.0028831551 | 0.00811422 | 0.36 | 0.7232 |
| bsa_c | 0.0097725382 | 0.00512251 | 1.91 | 0.0595 |
| cic | 0.00000448857 | 0.00004526 | 0.99 | 0.3239 |
| urine24_c | -.00000004487 | 0.00000086 | -0.52 | 0.6044 |
| esode_cc | -.0000016374 | 0.00001338 | -0.12 | 0.9029 |
| lalbe_ca | 0.0013701396 | 0.00199154 | 0.69 | 0.4932 |
The GLM Procedure

Dependent Variable: slope

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-----------|--------------|----------------|---------|------|---|
| lpldle_ca | 0.0000072611 | 0.00002469 | 0.29 | 0.7694 |
| lphdle_ca | -.0000202284 | 0.00008509 | -0.24 | 0.8126 |
| surice_ca | 0.0016197675 | 0.00102828 | 1.58 | 0.1186 |

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.00063565</td>
<td>-0.00762699</td>
<td>0.00699135</td>
</tr>
<tr>
<td>2</td>
<td>-0.00582575</td>
<td>-0.00478878</td>
<td>-0.00103697</td>
</tr>
<tr>
<td>3</td>
<td>-0.00778096</td>
<td>-0.00540036</td>
<td>-0.00238060</td>
</tr>
<tr>
<td>4</td>
<td>-0.01299223</td>
<td>-0.00287879</td>
<td>-0.01011344</td>
</tr>
<tr>
<td>5</td>
<td>-0.01546362</td>
<td>0.00001674</td>
<td>-0.01548035</td>
</tr>
<tr>
<td>6</td>
<td>0.00679338</td>
<td>-0.00320848</td>
<td>0.01000186</td>
</tr>
<tr>
<td>7</td>
<td>-0.01365836</td>
<td>-0.00398873</td>
<td>-0.00966962</td>
</tr>
<tr>
<td>8</td>
<td>0.00135719</td>
<td>0.00156666</td>
<td>0.00120053</td>
</tr>
<tr>
<td>9</td>
<td>-0.00523710</td>
<td>0.00488134</td>
<td>-0.01011844</td>
</tr>
<tr>
<td>10</td>
<td>-0.00105209</td>
<td>0.00021863</td>
<td>-0.00127072</td>
</tr>
<tr>
<td>11</td>
<td>0.00732624</td>
<td>0.00022089</td>
<td>0.00710535</td>
</tr>
<tr>
<td>12</td>
<td>0.00687677</td>
<td>0.00331101</td>
<td>0.00356576</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>14</td>
<td>0.00230738</td>
<td>0.00800294</td>
<td>-0.00569556</td>
</tr>
<tr>
<td>15</td>
<td>-0.00049620</td>
<td>0.00275206</td>
<td>-0.00324826</td>
</tr>
<tr>
<td>16</td>
<td>-0.00931777</td>
<td>-0.00416603</td>
<td>-0.00515174</td>
</tr>
<tr>
<td>17</td>
<td>0.00050746</td>
<td>-0.00245388</td>
<td>0.00296134</td>
</tr>
<tr>
<td>18</td>
<td>0.00030440</td>
<td>0.00463635</td>
<td>-0.00433195</td>
</tr>
<tr>
<td>19</td>
<td>0.00806870</td>
<td>-0.00553751</td>
<td>0.01360622</td>
</tr>
<tr>
<td>20</td>
<td>-0.00472390</td>
<td>-0.00096993</td>
<td>-0.00375397</td>
</tr>
<tr>
<td>21</td>
<td>-0.00292028</td>
<td>-0.00414693</td>
<td>0.00122665</td>
</tr>
<tr>
<td>22</td>
<td>0.00443854</td>
<td>0.00646904</td>
<td>-0.00203049</td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>24</td>
<td>0.01010014</td>
<td>0.00407687</td>
<td>0.00602327</td>
</tr>
<tr>
<td>25</td>
<td>0.00332672</td>
<td>0.00202991</td>
<td>0.00129682</td>
</tr>
<tr>
<td>26</td>
<td>0.00000000</td>
<td>-0.00338776</td>
<td>0.00338776</td>
</tr>
<tr>
<td>27</td>
<td>0.00367112</td>
<td>0.00602016</td>
<td>-0.00234904</td>
</tr>
<tr>
<td>28</td>
<td>-0.00725348</td>
<td>-0.00065929</td>
<td>-0.00659419</td>
</tr>
<tr>
<td>29</td>
<td>0.01288512</td>
<td>0.00616244</td>
<td>0.00672268</td>
</tr>
<tr>
<td>30</td>
<td>-0.00499980</td>
<td>-0.00670228</td>
<td>0.00170247</td>
</tr>
<tr>
<td>31</td>
<td>0.00103815</td>
<td>0.00240532</td>
<td>-0.00136718</td>
</tr>
<tr>
<td>32</td>
<td>-0.00704208</td>
<td>-0.00367414</td>
<td>-0.00336794</td>
</tr>
<tr>
<td>33</td>
<td>0.00211868</td>
<td>0.00043317</td>
<td>0.00168551</td>
</tr>
<tr>
<td>34</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>35</td>
<td>0.01915293</td>
<td>0.00488213</td>
<td>0.01427080</td>
</tr>
<tr>
<td>36</td>
<td>0.01137259</td>
<td>0.00128028</td>
<td>0.01009230</td>
</tr>
<tr>
<td>37</td>
<td>-0.00745481</td>
<td>-0.00067334</td>
<td>-0.00678147</td>
</tr>
</tbody>
</table>
The GLM Procedure

```
<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>-0.00918053</td>
<td>-0.00286215</td>
<td>-0.00631838</td>
</tr>
<tr>
<td>39</td>
<td>-0.00717759</td>
<td>-0.00155695</td>
<td>-0.00562064</td>
</tr>
<tr>
<td>40</td>
<td>-0.00180201</td>
<td>-0.00109932</td>
<td>-0.00070269</td>
</tr>
<tr>
<td>41</td>
<td>-0.01049164</td>
<td>-0.00751481</td>
<td>-0.00297683</td>
</tr>
<tr>
<td>42</td>
<td>0.00724269</td>
<td>-0.00017335</td>
<td>0.00741605</td>
</tr>
<tr>
<td>43</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.00481911</td>
<td>-0.00244534</td>
<td>0.00726445</td>
</tr>
<tr>
<td>45</td>
<td>0.00000000</td>
<td>0.00209231</td>
<td>-0.00209231</td>
</tr>
<tr>
<td>46</td>
<td>0.00917816</td>
<td>-0.00102751</td>
<td>0.01020566</td>
</tr>
<tr>
<td>47</td>
<td>0.00388413</td>
<td>0.00126711</td>
<td>0.00261703</td>
</tr>
<tr>
<td>48</td>
<td>0.01018590</td>
<td>0.00300703</td>
<td>0.00717887</td>
</tr>
<tr>
<td>49</td>
<td>-0.01780774</td>
<td>-0.00180342</td>
<td>-0.01600432</td>
</tr>
<tr>
<td>50</td>
<td>-0.00689460</td>
<td>-0.00221494</td>
<td>-0.00467966</td>
</tr>
<tr>
<td>51</td>
<td>-0.00345628</td>
<td>-0.00140055</td>
<td>-0.00205573</td>
</tr>
<tr>
<td>52</td>
<td>0.01845972</td>
<td>0.00646075</td>
<td>0.01199897</td>
</tr>
<tr>
<td>53</td>
<td>-0.00031916</td>
<td>-0.00084817</td>
<td>0.00052901</td>
</tr>
<tr>
<td>54</td>
<td>0.00481000</td>
<td>0.00161316</td>
<td>0.00319683</td>
</tr>
<tr>
<td>55</td>
<td>0.00766817</td>
<td>0.00125515</td>
<td>0.00641302</td>
</tr>
<tr>
<td>56</td>
<td>0.00571673</td>
<td>0.00160755</td>
<td>0.00410918</td>
</tr>
<tr>
<td>57</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>-0.00118908</td>
<td>0.00294701</td>
<td>-0.00413609</td>
</tr>
<tr>
<td>59</td>
<td>0.00685967</td>
<td>0.00016342</td>
<td>0.00669625</td>
</tr>
<tr>
<td>60</td>
<td>-0.00542295</td>
<td>0.00055380</td>
<td>-0.00597675</td>
</tr>
<tr>
<td>61</td>
<td>0.00010339</td>
<td>0.00051626</td>
<td>-0.00041286</td>
</tr>
<tr>
<td>62</td>
<td>-0.01177052</td>
<td>0.00179608</td>
<td>-0.01356660</td>
</tr>
<tr>
<td>63</td>
<td>-0.00880724</td>
<td>0.00279432</td>
<td>-0.01160156</td>
</tr>
<tr>
<td>64</td>
<td>-0.00465393</td>
<td>0.00253642</td>
<td>-0.00719035</td>
</tr>
<tr>
<td>65</td>
<td>0.01206447</td>
<td>-0.00078329</td>
<td>0.01284776</td>
</tr>
<tr>
<td>66</td>
<td>0.00390844</td>
<td>0.00426901</td>
<td>-0.00036057</td>
</tr>
<tr>
<td>67</td>
<td>-0.00824155</td>
<td>-0.00074417</td>
<td>-0.00749739</td>
</tr>
<tr>
<td>68</td>
<td>0.00338588</td>
<td>-0.00253798</td>
<td>0.00592386</td>
</tr>
<tr>
<td>69</td>
<td>0.01148996</td>
<td>-0.00045164</td>
<td>0.01194160</td>
</tr>
<tr>
<td>70</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>0.00373235</td>
<td>0.00145233</td>
<td>0.00228002</td>
</tr>
<tr>
<td>72</td>
<td>-0.00249441</td>
<td>-0.00288726</td>
<td>0.00039284</td>
</tr>
<tr>
<td>73</td>
<td>-0.00895718</td>
<td>-0.00739290</td>
<td>-0.00156427</td>
</tr>
<tr>
<td>74</td>
<td>-0.00055504</td>
<td>-0.00192890</td>
<td>0.00137386</td>
</tr>
</tbody>
</table>
```
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>-0.00101879</td>
<td>-0.00669583</td>
<td>0.00567704</td>
</tr>
<tr>
<td>76</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>-0.00948479</td>
<td>-0.00214991</td>
<td>-0.00733488</td>
</tr>
<tr>
<td>78</td>
<td>0.02529819</td>
<td>0.00467964</td>
<td>0.02061855</td>
</tr>
<tr>
<td>79</td>
<td>-0.00176558</td>
<td>-0.00138146</td>
<td>-0.00038412</td>
</tr>
<tr>
<td>80</td>
<td>0.00254141</td>
<td>0.00462723</td>
<td>-0.00208582</td>
</tr>
<tr>
<td>81</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>0.00706038</td>
<td>0.00527837</td>
<td>0.00178201</td>
</tr>
<tr>
<td>84</td>
<td>0.01219224</td>
<td>0.00333161</td>
<td>0.00886062</td>
</tr>
<tr>
<td>85</td>
<td>0.00323661</td>
<td>-0.00112901</td>
<td>0.00436562</td>
</tr>
<tr>
<td>86</td>
<td>-0.01011941</td>
<td>0.00096249</td>
<td>-0.01108191</td>
</tr>
<tr>
<td>87</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>-0.00973002</td>
<td>0.00090756</td>
<td>-0.01063758</td>
</tr>
<tr>
<td>89</td>
<td>-0.00377297</td>
<td>0.00021462</td>
<td>-0.00398759</td>
</tr>
<tr>
<td>90</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>-0.00899678</td>
<td>-0.00702535</td>
<td>-0.00197143</td>
</tr>
<tr>
<td>93</td>
<td>-0.00437116</td>
<td>-0.00349992</td>
<td>-0.00087124</td>
</tr>
<tr>
<td>94</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>0.00900467</td>
<td>-0.00146026</td>
<td>0.01046493</td>
</tr>
<tr>
<td>96</td>
<td>-0.01688949</td>
<td>-0.00150683</td>
<td>-0.01538265</td>
</tr>
<tr>
<td>97</td>
<td>-0.00154308</td>
<td>-0.00486628</td>
<td>0.00332320</td>
</tr>
<tr>
<td>98</td>
<td>-0.00930206</td>
<td>-0.00666957</td>
<td>-0.00263250</td>
</tr>
<tr>
<td>99</td>
<td>-0.01385837</td>
<td>-0.00351651</td>
<td>-0.01034186</td>
</tr>
<tr>
<td>100</td>
<td>-0.00631026</td>
<td>-0.00100530</td>
<td>-0.00530496</td>
</tr>
<tr>
<td>101</td>
<td>0.00181171</td>
<td>0.00030182</td>
<td>0.00150989</td>
</tr>
<tr>
<td>102</td>
<td>0.00721551</td>
<td>0.00354134</td>
<td>0.00367417</td>
</tr>
<tr>
<td>103</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>0.00279281</td>
<td>0.00259870</td>
<td>0.00019411</td>
</tr>
<tr>
<td>105</td>
<td>0.00002456</td>
<td>-0.00233990</td>
<td>0.00236446</td>
</tr>
<tr>
<td>106</td>
<td>0.00135576</td>
<td>-0.00227367</td>
<td>0.00362944</td>
</tr>
<tr>
<td>107</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>-0.00918356</td>
<td>0.00259151</td>
<td>-0.01177507</td>
</tr>
<tr>
<td>109</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>112 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.01086061</td>
<td>0.00150513</td>
<td>0.00935548</td>
</tr>
<tr>
<td>114</td>
<td>0.00841630</td>
<td>0.00129126</td>
<td>0.00712505</td>
</tr>
<tr>
<td>115 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>-0.00241315</td>
<td>0.00678208</td>
<td>-0.00919523</td>
</tr>
<tr>
<td>118</td>
<td>0.02438640</td>
<td>0.00582788</td>
<td>0.01855852</td>
</tr>
<tr>
<td>119</td>
<td>0.00173600</td>
<td>0.00075371</td>
<td>0.00098229</td>
</tr>
<tr>
<td>120</td>
<td>-0.00650491</td>
<td>0.00746198</td>
<td>-0.01396689</td>
</tr>
<tr>
<td>121</td>
<td>-0.00560338</td>
<td>-0.00239928</td>
<td>-0.00320410</td>
</tr>
<tr>
<td>122 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>0.00685172</td>
<td>-0.00103499</td>
<td>0.00788671</td>
</tr>
<tr>
<td>124</td>
<td>0.00116865</td>
<td>0.00817335</td>
<td>-0.00700470</td>
</tr>
<tr>
<td>125 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>0.00416139</td>
<td>0.00532323</td>
<td>-0.00116184</td>
</tr>
<tr>
<td>127</td>
<td>-0.00500775</td>
<td>0.00147741</td>
<td>-0.00648515</td>
</tr>
<tr>
<td>128 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>0.00035179</td>
<td>-0.00409624</td>
<td>0.00044803</td>
</tr>
<tr>
<td>130 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>0.00000000</td>
<td>-0.00326245</td>
<td>0.00326245</td>
</tr>
</tbody>
</table>

* Observation was not used in this analysis

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Residuals</td>
<td>0.00000000</td>
</tr>
<tr>
<td>Sum of Squared Residuals</td>
<td>0.00580703</td>
</tr>
<tr>
<td>Sum of Squared Residuals - Error SS</td>
<td>-0.00000000</td>
</tr>
<tr>
<td>First Order Autocorrelation</td>
<td>-0.06819376</td>
</tr>
<tr>
<td>Durbin-Watson D</td>
<td>2.12613744</td>
</tr>
</tbody>
</table>
Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Imrrcvs</td>
</tr>
<tr>
<td>Covariance Structure</td>
<td>Variance Components</td>
</tr>
<tr>
<td>Subject Effect</td>
<td>pkdid</td>
</tr>
<tr>
<td>Estimation Method</td>
<td>ML</td>
</tr>
<tr>
<td>Residual Variance Method</td>
<td>Profile</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
<td>Model-Based</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
<td>Containment</td>
</tr>
</tbody>
</table>

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>131</td>
<td>200922 201800 201877 203328 204555 205758 206816 208820 208324 209281 213454 214376 215052 216086 220068 223343 223534 223635 224502 226640 229428 229733 232174 234053 234650 234795 235752 236202 237192 239960 241501 242715 243560 243738 244111 244831 245990 246620 247880 248712 252086 255765 256171 258950 259940 263617 264225 264348 265171 268455 271043 271460 271662 271684 273214 273225 277490 281000 281977 283722 283935 285601 286095 290336 292362 293317 293598 294105 294511 295106 295940 298515 299663 300641 300696 300911 301157 301372 303868 304860 306546 312317 313195 313307 313893 316110 318562 320182 320957 321611 323837 325290 327055 327325 327933 331318 333524 334672 336167 336843 337315 342131 343097 343233 354494 358230 359308 364664 367836 368973 369941 370942 371021 374068 374687 376004 376252 380166 380998 383193 383744 385151 386040 386488 386758 387658 392316 393936 394588 397661 397931</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance Parameters</td>
<td>3</td>
</tr>
<tr>
<td>Columns in X</td>
<td>2</td>
</tr>
<tr>
<td>Columns in Z Per Subject</td>
<td>2</td>
</tr>
<tr>
<td>Subjects</td>
<td>131</td>
</tr>
<tr>
<td>Max Obs Per Subject</td>
<td>4</td>
</tr>
<tr>
<td>Observations Used</td>
<td>445</td>
</tr>
<tr>
<td>Observations Not Used</td>
<td>79</td>
</tr>
<tr>
<td>Total Observations</td>
<td>524</td>
</tr>
</tbody>
</table>

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>582.08207976</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-609.86161010</td>
<td>0.03886787</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-645.70201513</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-664.82165145</td>
<td>0.00726681</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-671.37595557</td>
<td>0.00142315</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-672.57663612</td>
<td>0.00008120</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>-672.63958959</td>
<td>0.00000033</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-672.63983636</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

Convergence criteria met.

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>pkdid</td>
<td>0.2194</td>
</tr>
<tr>
<td>visc</td>
<td>pkdid</td>
<td>0.000237</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>0.002085</td>
</tr>
</tbody>
</table>

Fit Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
<td>-672.6</td>
</tr>
<tr>
<td>AIC (smaller is better)</td>
<td>-662.6</td>
</tr>
<tr>
<td>AICC (smaller is better)</td>
<td>-662.5</td>
</tr>
<tr>
<td>BIC (smaller is better)</td>
<td>-648.3</td>
</tr>
</tbody>
</table>

Solution for Fixed Effects

| Effect | Estimate | Standard Error | DF | t Value | Pr > |t| |
|--------|----------|----------------|----|---------|-------|
| Intercept | 2.5073 | 0.04107 | 130 | 61.05 | <.0001 |
| visc | 0.05247 | 0.002518 | 125 | 20.84 | <.0001 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|-------|
| Intercept | 200922 | -0.00815 | 0.05028 | 188 | -0.16 | 0.8713 |
| Intercept | 200922 | -0.00064 | 0.01403 | 188 | -0.05 | 0.9639 |
| Intercept | 201800 | 0.8440 | 0.05045 | 188 | 16.73 | <.0001 |
| Intercept | 201877 | 0.03483 | 0.05031 | 188 | 0.69 | 0.4896 |
| Intercept | 203328 | 0.2675 | 0.05074 | 188 | 5.27 | <.0001 |
| Intercept | 203328 | -0.01299 | 0.01216 | 188 | -1.07 | 0.2868 |
| Intercept | 204555 | 0.2475 | 0.05138 | 188 | 4.82 | <.0001 |
| Intercept | 204555 | -0.01546 | 0.01237 | 188 | -1.25 | 0.2127 |
| Intercept | 205758 | 0.2272 | 0.05054 | 188 | 4.49 | <.0001 |
| Intercept | 206816 | 0.1637 | 0.05056 | 188 | 3.24 | 0.0014 |
| Intercept | 206816 | -0.01366 | 0.01391 | 188 | -0.98 | 0.3275 |
| Intercept | 208280 | -0.2281 | 0.05033 | 188 | -4.53 | <.0001 |
| Intercept | 208280 | 0.001357 | 0.01231 | 188 | 0.11 | 0.9123 |
| Intercept | 208324 | -0.02960 | 0.05030 | 188 | -0.59 | 0.5568 |
| Intercept | 208324 | -0.00524 | 0.01231 | 188 | -0.43 | 0.6710 |
| Intercept | 209281 | -0.1184 | 0.05067 | 188 | -2.34 | 0.0205 |
| Intercept | 209281 | -0.00105 | 0.01395 | 188 | -0.08 | 0.9400 |
| Intercept | 213454 | -0.5656 | 0.05047 | 188 | -11.21 | <.0001 |
| Intercept | 213454 | 0.007326 | 0.01210 | 188 | 0.61 | 0.5454 |
| Intercept | 214376 | -0.1088 | 0.05061 | 188 | -2.15 | 0.0329 |
| Intercept | 214376 | 0.006877 | 0.01391 | 188 | 0.49 | 0.6216 |
| Intercept | 215052 | -0.2536 | 0.05168 | 188 | -4.91 | <.0001 |
| Intercept | 215052 | 0.02216 | 0.01192 | 188 | 1.86 | 0.0647 |
| Intercept | 216086 | 0.7445 | 0.05037 | 188 | 14.78 | <.0001 |
| Intercept | 216086 | 0.002307 | 0.01235 | 188 | 0.19 | 0.8520 |
| Intercept | 220068 | 0.8391 | 0.05062 | 188 | 16.58 | <.0001 |
| Intercept | 220068 | -0.00050 | 0.01389 | 188 | -0.04 | 0.9715 |
| Intercept | 223343 | 0.2255 | 0.05034 | 188 | 4.48 | <.0001 |
| Intercept | 223343 | -0.00932 | 0.01216 | 188 | -0.77 | 0.4444 |
| Intercept | 223534 | 0.2876 | 0.05065 | 188 | 5.68 | <.0001 |
| Intercept | 223534 | 0.000507 | 0.01386 | 188 | 0.04 | 0.9708 |
| Intercept | 223635 | -0.3800 | 0.05088 | 188 | -7.47 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|----------|-------|-----|
| visc | 223635 | 0.000304 | 0.01345 | 188| 0.02 | 0.9820 |
| Intercept | 224502 | -0.06916 | 0.05110 | 188| -1.35 | 0.1775 |
| visc | 224502 | 0.008069 | 0.01239 | 188| 0.65 | 0.5157 |
| Intercept | 226640 | 0.2299 | 0.05032 | 188| 4.57 | <.0001 |
| visc | 226640 | -0.00472 | 0.01229 | 188| -0.38 | 0.7012 |
| Intercept | 229428 | 0.1169 | 0.05056 | 188| 2.31 | 0.0219 |
| visc | 229428 | -0.00292 | 0.01389 | 188| -0.21 | 0.8337 |
| Intercept | 229733 | 0.2651 | 0.05048 | 188| 5.25 | <.0001 |
| visc | 229733 | 0.004439 | 0.01386 | 188| 0.32 | 0.7491 |
| Intercept | 232174 | -0.2406 | 0.05098 | 188| -4.72 | <.0001 |
| visc | 232174 | -0.00480 | 0.01363 | 188| -0.35 | 0.7250 |
| Intercept | 234053 | 0.4794 | 0.05025 | 188| 9.54 | <.0001 |
| visc | 234053 | 0.01010 | 0.01235 | 188| 0.82 | 0.4145 |
| Intercept | 234650 | 0.1259 | 0.05014 | 188| 2.51 | 0.0129 |
| visc | 234650 | 0.003327 | 0.01233 | 188| 0.27 | 0.7876 |
| Intercept | 234795 | -0.7775 | 0.06099 | 188| -12.75 | <.0001 |
| visc | 234795 | 0 | 0.01540 | 188| 0.00 | 1.0000 |
| Intercept | 235752 | -0.06279 | 0.05192 | 188| -1.21 | 0.2281 |
| visc | 235752 | 0.003671 | 0.01262 | 188| 0.29 | 0.7714 |
| Intercept | 236202 | 0.6394 | 0.05029 | 188| 12.71 | <.0001 |
| visc | 236202 | -0.00725 | 0.01217 | 188| -0.60 | 0.5517 |
| Intercept | 237192 | 0.4652 | 0.05037 | 188| 9.23 | <.0001 |
| visc | 237192 | 0.01289 | 0.01217 | 188| 1.06 | 0.2913 |
| Intercept | 239960 | 0.2352 | 0.05063 | 188| 4.64 | <.0001 |
| visc | 239960 | -0.00500 | 0.01383 | 188| -0.36 | 0.7181 |
| Intercept | 241501 | -1.1674 | 0.05065 | 188| -23.05 | <.0001 |
| visc | 241501 | 0.001038 | 0.01114 | 188| 0.09 | 0.9259 |
| Intercept | 242715 | -0.1563 | 0.05050 | 188| -3.09 | 0.0023 |
| visc | 242715 | -0.00704 | 0.01217 | 188| -0.58 | 0.5634 |
| Intercept | 243560 | -0.7710 | 0.05061 | 188| -15.23 | <.0001 |
| visc | 243560 | 0.002119 | 0.01385 | 188| 0.15 | 0.8786 |
| Intercept | 243738 | 0.4945 | 0.05054 | 188| 9.79 | <.0001 |
| visc | 243738 | 0.003373 | 0.01387 | 188| 0.24 | 0.8082 |
| Intercept | 244111 | -0.1506 | 0.05052 | 188| -2.98 | 0.0032 |
| visc | 244111 | 0.01915 | 0.01183 | 188| 1.62 | 0.1072 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|----------|-----------------------|----------|---------|---------|---------|------|---|
| Intercept| 244831 | -0.4521 | 0.05084 | 188 | -8.89 | <.0001 |
| visc | 244831 | 0.01137 | 0.01370 | 188 | 0.83 | 0.4076 |
| Intercept| 245990 | -0.9176 | 0.05050 | 188 | -18.17 | <.0001 |
| visc | 245990 | -0.00745 | 0.01395 | 188 | -0.53 | 0.5937 |
| Intercept| 246620 | -0.6115 | 0.05060 | 188 | -12.09 | <.0001 |
| visc | 246620 | -0.00918 | 0.01217 | 188 | -0.75 | 0.4515 |
| Intercept| 247880 | -0.4377 | 0.05053 | 188 | -8.66 | <.0001 |
| visc | 247880 | -0.00718 | 0.01184 | 188 | -0.61 | 0.5453 |
| Intercept| 248712 | -0.1763 | 0.05065 | 188 | -3.48 | 0.0006 |
| visc | 248712 | -0.00180 | 0.01216 | 188 | -0.15 | 0.8824 |
| Intercept| 252086 | 0.2307 | 0.05154 | 188 | 4.48 | <.0001 |
| visc | 252086 | -0.01049 | 0.01237 | 188 | -0.85 | 0.3976 |
| Intercept| 255765 | -0.1491 | 0.05033 | 188 | -2.96 | 0.0034 |
| visc | 255765 | 0.007243 | 0.01232 | 188 | 0.59 | 0.5572 |
| Intercept| 256171 | -0.2046 | 0.04993 | 188 | -4.10 | <.0001 |
| visc | 256171 | 0.008280 | 0.01252 | 188 | 0.66 | 0.5091 |
| Intercept| 258950 | 0.3003 | 0.05256 | 188 | 5.71 | <.0001 |
| visc | 258950 | 0.004819 | 0.01496 | 188 | 0.32 | 0.7477 |
| Intercept| 259940 | -0.3075 | 0.06099 | 188 | -5.04 | <.0001 |
| visc | 259940 | 0 | 0.01540 | 188 | 0.00 | 1.0000 |
| Intercept| 263617 | -0.3318 | 0.05043 | 188 | -6.58 | <.0001 |
| visc | 263617 | 0.009178 | 0.01228 | 188 | 0.75 | 0.4556 |
| Intercept| 264225 | 0.01735 | 0.05038 | 188 | 0.34 | 0.7309 |
| visc | 264225 | 0.003884 | 0.01213 | 188 | 0.32 | 0.7491 |
| Intercept| 264348 | -0.1532 | 0.05023 | 188 | -3.05 | 0.0026 |
| visc | 264348 | 0.01019 | 0.01232 | 188 | 0.83 | 0.4095 |
| Intercept| 265171 | -1.3542 | 0.05062 | 188 | -26.75 | <.0001 |
| visc | 265171 | -0.01781 | 0.01385 | 188 | -1.29 | 0.2001 |
| Intercept| 268455 | 0.6082 | 0.05065 | 188 | 12.01 | <.0001 |
| visc | 268455 | -0.00689 | 0.01218 | 188 | -0.57 | 0.5721 |
| Intercept| 271043 | -0.3399 | 0.05036 | 188 | -6.75 | <.0001 |
| visc | 271043 | -0.00346 | 0.01391 | 188 | -0.25 | 0.8041 |
| Intercept| 271460 | -0.5258 | 0.05027 | 188 | -10.46 | <.0001 |
| visc | 271460 | 0.01846 | 0.01229 | 188 | 1.50 | 0.1348 |
| Intercept| 271662 | 0.4328 | 0.05248 | 188 | 8.25 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|-------|-----|---------|-------|---|
| visc | 271662 | -0.00032 | 0.01502 | 188 | -0.02 | 0.9831 | | |
| Intercept | 271664 | -0.3241 | 0.05075 | 188 | -6.39 | <.0001 | | |
| visc | 271684 | 0.004810 | 0.01373 | 188 | 0.35 | 0.7265 | | |
| Intercept | 273214 | 0.2275 | 0.04991 | 188 | 4.56 | <.0001 | | |
| visc | 273214 | 0.007668 | 0.01253 | 188 | 0.61 | 0.5412 | | |
| Intercept | 273225 | 0.3871 | 0.05392 | 188 | 7.18 | <.0001 | | |
| visc | 273225 | 0.005717 | 0.01378 | 188 | 0.41 | 0.6786 | | |
| Intercept | 274790 | 0.05140 | 0.05254 | 188 | 0.98 | 0.3291 | | |
| visc | 277490 | 0.009594 | 0.01497 | 188 | 0.64 | 0.5224 | | |
| Intercept | 281000 | 0.03718 | 0.05020 | 188 | 0.74 | 0.4599 | | |
| visc | 281000 | -0.00119 | 0.01233 | 188 | -0.10 | 0.9233 | | |
| Intercept | 281977 | 0.2797 | 0.05038 | 188 | 5.55 | <.0001 | | |
| visc | 281977 | 0.006860 | 0.01225 | 188 | 0.56 | 0.5761 | | |
| Intercept | 283722 | 0.1549 | 0.05042 | 188 | 3.07 | 0.0024 | | |
| visc | 283722 | -0.00542 | 0.01396 | 188 | -0.39 | 0.6981 | | |
| Intercept | 283935 | 0.2108 | 0.05087 | 188 | 4.14 | <.0001 | | |
| visc | 283935 | 0.000103 | 0.01366 | 188 | 0.01 | 0.9940 | | |
| Intercept | 285601 | 0.7911 | 0.05044 | 188 | 15.68 | <.0001 | | |
| visc | 285601 | -0.01177 | 0.01226 | 188 | -0.96 | 0.3382 | | |
| Intercept | 286095 | -0.04440 | 0.05033 | 188 | -0.88 | 0.3788 | | |
| visc | 286095 | -0.00881 | 0.01226 | 188 | -0.72 | 0.4734 | | |
| Intercept | 290336 | -0.2277 | 0.05064 | 188 | -4.50 | <.0001 | | |
| visc | 290336 | -0.00465 | 0.01216 | 188 | -0.38 | 0.7024 | | |
| Intercept | 292362 | 0.5971 | 0.05084 | 188 | 11.74 | <.0001 | | |
| visc | 292362 | 0.01206 | 0.01205 | 188 | 1.00 | 0.3178 | | |
| Intercept | 293317 | 0.6890 | 0.05033 | 188 | 13.69 | <.0001 | | |
| visc | 293317 | 0.003908 | 0.01382 | 188 | 0.28 | 0.7776 | | |
| Intercept | 293598 | 0.7876 | 0.05081 | 188 | 15.50 | <.0001 | | |
| visc | 293598 | -0.00824 | 0.01382 | 188 | -0.60 | 0.5517 | | |
| Intercept | 294105 | 0.2900 | 0.05270 | 188 | 5.50 | <.0001 | | |
| visc | 294105 | 0.003386 | 0.01483 | 188 | 0.23 | 0.8197 | | |
| Intercept | 294511 | -0.2026 | 0.05071 | 188 | -4.00 | <.0001 | | |
| visc | 294511 | 0.01149 | 0.01380 | 188 | 0.83 | 0.4060 | | |
| Intercept | 295106 | -0.3070 | 0.05039 | 188 | -6.09 | <.0001 | | |
| visc | 295106 | -0.00939 | 0.01202 | 188 | -0.78 | 0.4357 | | |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|----|---------|-------|-----------------------------|
| Intercept | 295940 | 0.4064 | 0.05018 | 188 | 8.10 | <.0001 |
| Intercept | 300641 | -0.00056 | 0.01392 | 188 | -0.04 | 0.9682 |
| Intercept | 300860 | 0.4560 | 0.05029 | 188 | 9.03 | <.0001 |
| Intercept | 304860 | 0.08372 | 0.05029 | 188 | 1.66 | 0.0977 |
| Intercept | 318562 | -0.00765 | 0.01224 | 188 | -0.61 | 0.5393 |
| Intercept | 320182 | 0.2126 | 0.05062 | 188 | 4.20 | <.0001 |
| Intercept | 320912 | 0.02217 | 0.05129 | 188 | 0.43 | 0.6660 |
| Intercept | 320912 | 0.02530 | 0.01223 | 188 | -0.08 | 0.9337 |
| Intercept | 320912 | -0.003237 | 0.01396 | 188 | -0.37 | 0.7081 |
| Intercept | 320912 | 0.05232 | 0.01223 | 188 | 2.02 | 0.0447 |
| Intercept | 320912 | -0.00402 | 0.01223 | 188 | -0.77 | 0.4415 |
| Intercept | 320912 | 0.00948 | 0.01223 | 188 | -0.77 | 0.4415 |
| Intercept | 320912 | 0.00102 | 0.01223 | 188 | -0.08 | 0.9337 |
| Intercept | 320912 | 0.3494 | 0.05054 | 188 | -6.06 | <.0001 |
| Intercept | 320912 | -0.00249 | 0.01389 | 188 | -0.18 | 0.8576 |
| Intercept | 320912 | 0.4988 | 0.05050 | 188 | 9.88 | <.0001 |
| Intercept | 320912 | -0.00102 | 0.01223 | 188 | -0.08 | 0.9337 |
| Intercept | 320912 | -0.00402 | 0.01223 | 188 | -0.77 | 0.4415 |
| Intercept | 320912 | 0.4064 | 0.05018 | 188 | 8.10 | <.0001 |
| Intercept | 320912 | -0.00056 | 0.01392 | 188 | -0.04 | 0.9682 |
| Intercept | 320912 | 0.4560 | 0.05029 | 188 | 9.03 | <.0001 |
| Intercept | 320912 | 0.08372 | 0.05029 | 188 | 1.66 | 0.0977 |
| Intercept | 320912 | 0.00948 | 0.01223 | 188 | -0.77 | 0.4415 |
| Intercept | 320912 | 0.00102 | 0.01223 | 188 | -0.08 | 0.9337 |
| Intercept | 320912 | 0.3494 | 0.05054 | 188 | -6.06 | <.0001 |
| Intercept | 320912 | -0.00249 | 0.01389 | 188 | -0.18 | 0.8576 |
| Intercept | 320912 | 0.4988 | 0.05050 | 188 | 9.88 | <.0001 |
| Intercept | 320912 | -0.00102 | 0.01223 | 188 | -0.08 | 0.9337 |
| Intercept | 320912 | 0.4064 | 0.05018 | 188 | 8.10 | <.0001 |
| Intercept | 320912 | -0.00056 | 0.01392 | 188 | -0.04 | 0.9682 |
| Intercept | 320912 | 0.4560 | 0.05029 | 188 | 9.03 | <.0001 |
| Intercept | 320912 | 0.08372 | 0.05029 | 188 | 1.66 | 0.0977 |
| Intercept | 320912 | 0.00948 | 0.01223 | 188 | -0.77 | 0.4415 |
| Intercept | 320912 | 0.00102 | 0.01223 | 188 | -0.08 | 0.9337 |
| Intercept | 320912 | 0.3494 | 0.05054 | 188 | -6.06 | <.0001 |
| Intercept | 320912 | -0.00249 | 0.01389 | 188 | -0.18 | 0.8576 |
| Intercept | 320912 | 0.4988 | 0.05050 | 188 | 9.88 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|-----------------------|----------|---------|---------|---------|-------|---|
| visc | 320182 | -0.00973 | 0.01391 | 188 | -0.70 | 0.4850 |
| Intercept | 320957 | -0.8981 | 0.05051 | 188 | -17.78 | <.0001|
| visc | 320957 | -0.00377 | 0.01393 | 188 | -0.27 | 0.7868 |
| Intercept | 321611 | 0.5626 | 0.06099 | 188 | 9.22 | <.0001|
| visc | 321611 | 0 | 0.01540 | 188 | 0.00 | 1.0000 |
| Intercept | 323837 | -0.00377 | 0.01393 | 188 | -0.27 | 0.7868 |
| visc | 323837 | 0.5626 | 0.06099 | 188 | 9.22 | <.0001|
| Intercept | 325290 | 0.3079 | 0.05023 | 188 | 6.13 | <.0001|
| visc | 325290 | -0.00900 | 0.01230 | 188 | -0.73 | 0.4655 |
| Intercept | 327055 | -0.3681 | 0.05020 | 188 | -7.33 | <.0001|
| visc | 327055 | -0.00437 | 0.01241 | 188 | -0.35 | 0.7250 |
| Intercept | 327325 | -0.1408 | 0.05041 | 188 | -2.79 | 0.0058 |
| visc | 327325 | -0.01181 | 0.01229 | 188 | -0.96 | 0.3379 |
| Intercept | 327933 | -0.2582 | 0.05027 | 188 | -5.14 | <.0001|
| visc | 327933 | 0.009005 | 0.01230 | 188 | 0.73 | 0.4652 |
| Intercept | 331318 | -0.8937 | 0.05034 | 188 | -17.75 | <.0001|
| visc | 331318 | -0.01689 | 0.01230 | 188 | -1.37 | 0.1714 |
| Intercept | 333524 | 0.8120 | 0.05054 | 188 | 16.06 | <.0001|
| visc | 333524 | -0.00154 | 0.01388 | 188 | -0.11 | 0.9116 |
| Intercept | 334672 | 0.4700 | 0.05048 | 188 | 9.31 | <.0001|
| visc | 334672 | -0.00930 | 0.01182 | 188 | -0.79 | 0.4323 |
| Intercept | 336167 | -0.07003 | 0.04988 | 188 | -1.40 | 0.1619 |
| visc | 336167 | -0.01386 | 0.01278 | 188 | -1.08 | 0.2797 |
| Intercept | 336843 | -0.05762 | 0.05029 | 188 | -1.15 | 0.2534 |
| visc | 336843 | -0.00631 | 0.01229 | 188 | -0.51 | 0.6083 |
| Intercept | 337315 | -0.07088 | 0.05026 | 188 | -1.41 | 0.1601 |
| visc | 337315 | 0.001812 | 0.01233 | 188 | 0.15 | 0.8833 |
| Intercept | 342131 | 0.01995 | 0.05060 | 188 | 0.39 | 0.6939 |
| visc | 342131 | 0.007216 | 0.01356 | 188 | 0.53 | 0.5952 |
| Intercept | 343097 | 0.4531 | 0.05034 | 188 | 9.00 | <.0001|
| visc | 343097 | 0.01575 | 0.01227 | 188 | 1.28 | 0.2007 |
| Intercept | 343233 | 0.2632 | 0.05024 | 188 | 5.24 | <.0001|
| visc | 343233 | 0.002793 | 0.01242 | 188 | 0.22 | 0.8224 |
| Intercept | 354494 | -0.1451 | 0.05382 | 188 | -2.70 | 0.0077|
| visc | 354494 | 0.000025 | 0.01386 | 188 | 0.00 | 0.9986 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|----------------------|----------|--------------|----|---------|------|
| Intercept | 358230 | -0.00034 | 0.05036 | 188 | -0.01 | 0.9947 |
| visc | 358230 | 0.001356 | 0.01233 | 188 | 0.11 | 0.9126 |
| Intercept | 359308 | 0.05954 | 0.05034 | 188 | 1.18 | 0.2384 |
| visc | 359308 | -0.00140 | 0.01227 | 188 | -0.11 | 0.9094 |
| Intercept | 364664 | -0.9648 | 0.05028 | 188 | -19.19 | <.0001 |
| visc | 364664 | -0.00918 | 0.01226 | 188 | -0.75 | 0.4548 |
| Intercept | 367836 | 0.5933 | 0.05041 | 188 | 11.77 | <.0001 |
| visc | 367836 | 0.003364 | 0.01398 | 188 | 0.24 | 0.8100 |
| Intercept | 368973 | -0.2028 | 0.05057 | 188 | -4.01 | <.0001 |
| visc | 368973 | -0.00261 | 0.01388 | 188 | -0.19 | 0.8510 |
| Intercept | 369941 | -1.3378 | 0.05256 | 188 | -25.45 | <.0001 |
| visc | 369941 | -0.01012 | 0.01495 | 188 | -0.68 | 0.4995 |
| Intercept | 370942 | -1.0347 | 0.05050 | 188 | -20.49 | <.0001 |
| visc | 370942 | -0.01287 | 0.01394 | 188 | -0.92 | 0.3572 |
| Intercept | 371021 | -0.6172 | 0.05050 | 188 | -12.27 | <.0001 |
| visc | 371021 | 0.01086 | 0.01229 | 188 | 0.88 | 0.3779 |
| Intercept | 374068 | -0.5476 | 0.05145 | 188 | -10.64 | <.0001 |
| visc | 374068 | 0.008416 | 0.01211 | 188 | 0.69 | 0.4880 |
| Intercept | 374687 | -0.2520 | 0.05053 | 188 | -4.99 | <.0001 |
| visc | 374687 | -0.00292 | 0.01390 | 188 | -0.21 | 0.8339 |
| Intercept | 376004 | 0.5876 | 0.05052 | 188 | 11.63 | <.0001 |
| visc | 376004 | -0.00191 | 0.01391 | 188 | -0.14 | 0.8908 |
| Intercept | 376252 | -0.1871 | 0.05022 | 188 | -3.73 | 0.0003 |
| visc | 376252 | -0.00241 | 0.01243 | 188 | -0.19 | 0.8463 |
| Intercept | 380166 | -0.06622 | 0.05015 | 188 | -1.32 | 0.1883 |
| visc | 380166 | 0.02439 | 0.01239 | 188 | 1.97 | 0.0505 |
| Intercept | 380998 | 0.4327 | 0.05029 | 188 | 8.60 | <.0001 |
| visc | 380998 | 0.001736 | 0.01227 | 188 | 0.14 | 0.8877 |
| Intercept | 383193 | -0.2018 | 0.05025 | 188 | -4.02 | <.0001 |
| visc | 383193 | -0.00650 | 0.01227 | 188 | -0.53 | 0.5965 |
| Intercept | 383744 | 0.3222 | 0.05131 | 188 | 6.28 | <.0001 |
| visc | 383744 | -0.00560 | 0.01244 | 188 | -0.45 | 0.6528 |
| Intercept | 385151 | 0.1281 | 0.06099 | 188 | 2.10 | 0.0371 |
| visc | 385151 | 0 | 0.01540 | 188 | 0.00 | 1.0000 |
| Intercept | 386040 | 0.4859 | 0.05302 | 188 | 9.17 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|-------|----------|
| visc | 386040 | 0.006852 | 0.01218 | 188 | 0.56 | 0.5745 |
| Intercept | 386488 | 0.2381 | 0.05059 | 188 | 4.71 | <.0001 |
| visc | 386488 | 0.001169 | 0.01385 | 188 | 0.08 | 0.9328 |
| Intercept | 386758 | 0.4861 | 0.05038 | 188 | 9.65 | <.0001 |
| visc | 386758 | 0.000211 | 0.01216 | 188 | 0.02 | 0.9862 |
| Intercept | 387658 | 0.3785 | 0.05037 | 188 | 7.51 | <.0001 |
| visc | 387658 | 0.004161 | 0.01221 | 188 | 0.34 | 0.7336 |
| Intercept | 392316 | 0.2511 | 0.05031 | 188 | 4.99 | <.0001 |
| visc | 392316 | -0.00501 | 0.01223 | 188 | -0.41 | 0.6828 |
| Intercept | 393936 | 0.1914 | 0.05056 | 188 | 3.79 | 0.0002 |
| visc | 393936 | -0.00128 | 0.01389 | 188 | -0.09 | 0.9266 |
| Intercept | 394588 | 0.6187 | 0.05043 | 188 | 12.27 | <.0001 |
| visc | 394588 | 0.000352 | 0.01394 | 188 | 0.03 | 0.9799 |
| Intercept | 397661 | 0.5058 | 0.05029 | 188 | 10.06 | <.0001 |
| visc | 397661 | -0.00750 | 0.01229 | 188 | -0.61 | 0.5426 |
| Intercept | 397931 | 0.09715 | 0.06099 | 188 | 1.59 | 0.1129 |
| visc | 397931 | 0 | 0.01540 | 188 | 0.00 | 1.0000 |

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>1</td>
<td>125</td>
<td>434.15</td>
<td><.0001</td>
</tr>
</tbody>
</table>
The MEANS Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>N Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>Participant/ID Number</td>
<td>0</td>
</tr>
<tr>
<td>slope</td>
<td>Std Err Pred</td>
<td>0</td>
</tr>
<tr>
<td>pccn</td>
<td>PCC/Number</td>
<td>0</td>
</tr>
<tr>
<td>dvdate</td>
<td>Visit/Date/#3 (1)</td>
<td>1</td>
</tr>
<tr>
<td>vis</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>urine24_c</td>
<td>24hr Urine (dL/24hr)</td>
<td>1</td>
</tr>
<tr>
<td>surice_ca</td>
<td>Serum:Uric Acid (mg/dL) (c)</td>
<td>0</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>Serum:HDL (mg/dL) (c)</td>
<td>0</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td>17</td>
</tr>
<tr>
<td>albe_ca</td>
<td>Urine:Albumin Excr (mg/24hr) (c)</td>
<td>2</td>
</tr>
<tr>
<td>ecitre_ca</td>
<td>Urine:Citrate Excr (mg/24h) (c)</td>
<td>5</td>
</tr>
<tr>
<td>esode_cc</td>
<td>Urine:Sodium Excr (mEq/24h) (c)</td>
<td>2</td>
</tr>
<tr>
<td>xbvdate</td>
<td>Visit/Date</td>
<td>0</td>
</tr>
<tr>
<td>cic</td>
<td>Correct Iothalamate Clear # 10</td>
<td>1</td>
</tr>
<tr>
<td>bsa_c</td>
<td>BSA (c)</td>
<td>0</td>
</tr>
<tr>
<td>hdyn</td>
<td>Hypertension yes/no # 12</td>
<td>0</td>
</tr>
<tr>
<td>bmi_c</td>
<td>BMI (c)</td>
<td>0</td>
</tr>
<tr>
<td>age</td>
<td>Age of participant</td>
<td>0</td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>MDRD GFR</td>
<td>0</td>
</tr>
<tr>
<td>mrskvs</td>
<td>MR K Vol/Sum Ster</td>
<td>0</td>
</tr>
<tr>
<td>mrrcvs</td>
<td>MR C Vol/Sum Reg</td>
<td>0</td>
</tr>
<tr>
<td>visc</td>
<td>Relative Visit</td>
<td>0</td>
</tr>
<tr>
<td>mrctps</td>
<td>Percent MR Cyst Vol</td>
<td>0</td>
</tr>
<tr>
<td>lmrskvs</td>
<td>Log10 MR K Vol/Sum Ster</td>
<td>0</td>
</tr>
<tr>
<td>lmrrevs</td>
<td>Log10 MR C Vol/Sum Reg</td>
<td>0</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>Log10 Urine:Albumin Excr (mg/24hr) (c)</td>
<td>2</td>
</tr>
<tr>
<td>lectire_ca</td>
<td>Log10 Urine:Citrate Excr (mg/24h) (c)</td>
<td>5</td>
</tr>
<tr>
<td>lMDRD_GFR</td>
<td>Log10 MDRD GFR</td>
<td>0</td>
</tr>
<tr>
<td>lrbf</td>
<td>Log10 Renal Blood Flow Corrected for BSA</td>
<td>8</td>
</tr>
<tr>
<td>lrvr</td>
<td>Log10 RVR corrected for BSA</td>
<td>11</td>
</tr>
<tr>
<td>lpff</td>
<td>Log10 Renal Plasma Flow</td>
<td>8</td>
</tr>
<tr>
<td>lff</td>
<td>Log10 Filtration Fraction</td>
<td>9</td>
</tr>
<tr>
<td>race</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>sex</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>ind1_cic</td>
<td>CIC < or >= 100?</td>
<td>1</td>
</tr>
<tr>
<td>ind2_cic</td>
<td>CIC < or >= 85?</td>
<td>1</td>
</tr>
<tr>
<td>genetypye</td>
<td>Gene Type</td>
<td>0</td>
</tr>
<tr>
<td>Avgsystol</td>
<td>Average Systolic BP over years</td>
<td>0</td>
</tr>
<tr>
<td>Avgdiastol</td>
<td>Average Diastolic BP over years</td>
<td>0</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>2</td>
<td>Female Male</td>
</tr>
<tr>
<td>hdyn</td>
<td>2</td>
<td>N Y</td>
</tr>
</tbody>
</table>

Number of observations 131

NOTE: Due to missing values, only 107 observations can be used in this analysis.
The GLM Procedure

Dependent Variable: slope

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12</td>
<td>0.00142917</td>
<td>0.00011910</td>
<td>1.92</td>
<td>0.0412</td>
</tr>
<tr>
<td>Error</td>
<td>94</td>
<td>0.00582580</td>
<td>0.00006198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>106</td>
<td>0.00725497</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coeff Var</th>
<th>Root MSE</th>
<th>slope Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.196992</td>
<td>22952.96</td>
<td>0.007873</td>
<td>0.000034</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>0.00005497</td>
<td>0.00005497</td>
<td>0.89</td>
<td>0.3487</td>
</tr>
<tr>
<td>hdyn</td>
<td>1</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00</td>
<td>0.9929</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>0.00003545</td>
<td>0.00003545</td>
<td>0.57</td>
<td>0.4514</td>
</tr>
<tr>
<td>lrbf</td>
<td>1</td>
<td>0.00002508</td>
<td>0.00002508</td>
<td>0.40</td>
<td>0.5262</td>
</tr>
<tr>
<td>bsa_c</td>
<td>1</td>
<td>0.00027753</td>
<td>0.00027753</td>
<td>4.48</td>
<td>0.0370</td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>1</td>
<td>0.00005020</td>
<td>0.00005020</td>
<td>0.81</td>
<td>0.3704</td>
</tr>
<tr>
<td>urine24_c</td>
<td>1</td>
<td>0.00002162</td>
<td>0.00002162</td>
<td>0.35</td>
<td>0.5562</td>
</tr>
<tr>
<td>esode_cc</td>
<td>1</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00</td>
<td>0.9960</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>1</td>
<td>0.00002457</td>
<td>0.00002457</td>
<td>0.40</td>
<td>0.5305</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>1</td>
<td>0.00001269</td>
<td>0.00001269</td>
<td>0.20</td>
<td>0.6519</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>1</td>
<td>0.00000341</td>
<td>0.00000341</td>
<td>0.06</td>
<td>0.8150</td>
</tr>
<tr>
<td>surice_ca</td>
<td>1</td>
<td>0.00014988</td>
<td>0.00014988</td>
<td>2.42</td>
<td>0.1233</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.0434030384</td>
<td>0.03008684</td>
<td>-1.44</td>
<td>0.1525</td>
<td></td>
</tr>
<tr>
<td>sex Female</td>
<td>0.0023915771</td>
<td>0.00253943</td>
<td>0.94</td>
<td>0.3487</td>
<td></td>
</tr>
<tr>
<td>sex Male</td>
<td>0.0000000000</td>
<td>0.00178182</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>hdyn N</td>
<td>0.0000158232</td>
<td>0.00001269</td>
<td>0.64</td>
<td>0.5262</td>
<td></td>
</tr>
<tr>
<td>hdyn Y</td>
<td>0.0000000000</td>
<td>0.00001781</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>-0.0000039104</td>
<td>0.00001241</td>
<td>-0.76</td>
<td>0.4514</td>
<td></td>
</tr>
<tr>
<td>lrbf</td>
<td>0.0048259551</td>
<td>0.00758571</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>bsa_c</td>
<td>0.0106829831</td>
<td>0.00504834</td>
<td>2.12</td>
<td>0.0370</td>
<td></td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>0.0000322288</td>
<td>0.00003581</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>urine24_c</td>
<td>-0.000005043</td>
<td>0.0000085</td>
<td>-0.59</td>
<td>0.5562</td>
<td></td>
</tr>
<tr>
<td>esode_cc</td>
<td>-0.00000662</td>
<td>0.00001320</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>0.0012432003</td>
<td>0.00197468</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

Dependent Variable: slope

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-------------|-------------|----------------|---------|------|---|
| lpldle_ca | 0.0000110235| 0.00002436 | 0.45 | 0.6519 |
| lphdle_ca | -0.0000198627 | 0.00008466 | -0.23 | 0.8150 |
| surice_ca | 0.0015735019 | 0.00101184 | 1.56 | 0.1233 |

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.00665191</td>
<td>0.00601627</td>
</tr>
<tr>
<td>2</td>
<td>-0.00379357</td>
<td>-0.00203218</td>
</tr>
<tr>
<td>3</td>
<td>-0.00447197</td>
<td>-0.00330899</td>
</tr>
<tr>
<td>4</td>
<td>-0.00254672</td>
<td>-0.01044551</td>
</tr>
<tr>
<td>5</td>
<td>0.00087214</td>
<td>-0.01633576</td>
</tr>
<tr>
<td>6</td>
<td>-0.00266861</td>
<td>0.00946199</td>
</tr>
<tr>
<td>7</td>
<td>-0.00438843</td>
<td>-0.00926993</td>
</tr>
<tr>
<td>8</td>
<td>-0.00002725</td>
<td>0.00138444</td>
</tr>
<tr>
<td>9</td>
<td>0.00712385</td>
<td>-0.01236094</td>
</tr>
<tr>
<td>10</td>
<td>-0.00066232</td>
<td>-0.0038977</td>
</tr>
<tr>
<td>11</td>
<td>-0.00033851</td>
<td>0.00766474</td>
</tr>
<tr>
<td>12</td>
<td>0.00269968</td>
<td>0.00417709</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.00840805</td>
<td>-0.00610067</td>
</tr>
<tr>
<td>15</td>
<td>0.00204833</td>
<td>-0.00254453</td>
</tr>
<tr>
<td>16</td>
<td>-0.00467148</td>
<td>-0.00464629</td>
</tr>
<tr>
<td>17</td>
<td>0.00050746</td>
<td>0.00309093</td>
</tr>
<tr>
<td>18</td>
<td>0.00543192</td>
<td>-0.00512752</td>
</tr>
<tr>
<td>19</td>
<td>0.00455371</td>
<td>0.01262241</td>
</tr>
<tr>
<td>20</td>
<td>-0.00091691</td>
<td>-0.00380700</td>
</tr>
<tr>
<td>21</td>
<td>-0.00362478</td>
<td>0.00070450</td>
</tr>
<tr>
<td>22</td>
<td>0.00528206</td>
<td>-0.00084351</td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.00282937</td>
<td>0.00727077</td>
</tr>
<tr>
<td>25</td>
<td>0.00162728</td>
<td>0.00225170</td>
</tr>
<tr>
<td>26</td>
<td>-0.00304525</td>
<td>0.00304525</td>
</tr>
<tr>
<td>27</td>
<td>0.00529403</td>
<td>-0.00162920</td>
</tr>
<tr>
<td>28</td>
<td>-0.00118711</td>
<td>-0.00606637</td>
</tr>
<tr>
<td>29</td>
<td>0.00630084</td>
<td>0.00658428</td>
</tr>
<tr>
<td>30</td>
<td>-0.00584048</td>
<td>0.00084068</td>
</tr>
<tr>
<td>31</td>
<td>0.00162728</td>
<td>-0.00058913</td>
</tr>
<tr>
<td>32</td>
<td>-0.00250944</td>
<td>-0.00453264</td>
</tr>
<tr>
<td>33</td>
<td>0.00063480</td>
<td>0.00148388</td>
</tr>
<tr>
<td>34</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.00570965</td>
<td>0.01344329</td>
</tr>
<tr>
<td>36</td>
<td>0.00270594</td>
<td>0.00866665</td>
</tr>
<tr>
<td>37</td>
<td>0.00069839</td>
<td>-0.00815320</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>-0.00918053</td>
<td>-0.00244914</td>
<td>-0.00673139</td>
</tr>
<tr>
<td>39</td>
<td>-0.00717759</td>
<td>-0.00115111</td>
<td>-0.00602648</td>
</tr>
<tr>
<td>40</td>
<td>-0.00180201</td>
<td>-0.00166365</td>
<td>-0.00013836</td>
</tr>
<tr>
<td>41</td>
<td>-0.01049164</td>
<td>-0.00655861</td>
<td>-0.00393303</td>
</tr>
<tr>
<td>42</td>
<td>0.00724269</td>
<td>-0.00063825</td>
<td>0.00788094</td>
</tr>
<tr>
<td>43</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.00481911</td>
<td>-0.00203897</td>
<td>0.00685808</td>
</tr>
<tr>
<td>45</td>
<td>0.00000000</td>
<td>0.00171679</td>
<td>-0.00171679</td>
</tr>
<tr>
<td>46</td>
<td>0.00917816</td>
<td>-0.00048800</td>
<td>0.00966616</td>
</tr>
<tr>
<td>47</td>
<td>0.00388413</td>
<td>0.00128422</td>
<td>0.00259991</td>
</tr>
<tr>
<td>48</td>
<td>0.01018590</td>
<td>0.00572136</td>
<td>0.00446454</td>
</tr>
<tr>
<td>49</td>
<td>-0.01780774</td>
<td>-0.00246631</td>
<td>-0.01534143</td>
</tr>
<tr>
<td>50</td>
<td>-0.00689460</td>
<td>-0.00201820</td>
<td>-0.00487640</td>
</tr>
<tr>
<td>51</td>
<td>-0.00345628</td>
<td>-0.00027694</td>
<td>-0.00317934</td>
</tr>
<tr>
<td>52</td>
<td>0.01845972</td>
<td>0.00554762</td>
<td>0.01291210</td>
</tr>
<tr>
<td>53</td>
<td>-0.00031916</td>
<td>-0.00110753</td>
<td>0.00078837</td>
</tr>
<tr>
<td>54</td>
<td>0.00481000</td>
<td>0.00205041</td>
<td>0.00275959</td>
</tr>
<tr>
<td>55</td>
<td>0.00766817</td>
<td>0.00002001</td>
<td>0.00764815</td>
</tr>
<tr>
<td>56</td>
<td>0.00571673</td>
<td>0.00253343</td>
<td>0.00318330</td>
</tr>
<tr>
<td>57</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>-0.00118908</td>
<td>0.00311403</td>
<td>-0.00430311</td>
</tr>
<tr>
<td>59</td>
<td>0.00685967</td>
<td>-0.00097230</td>
<td>0.00783197</td>
</tr>
<tr>
<td>60</td>
<td>-0.00542295</td>
<td>0.00012012</td>
<td>-0.00554307</td>
</tr>
<tr>
<td>61</td>
<td>0.00010339</td>
<td>0.00094213</td>
<td>-0.00083873</td>
</tr>
<tr>
<td>62</td>
<td>-0.01177052</td>
<td>-0.00003128</td>
<td>-0.01173923</td>
</tr>
<tr>
<td>63</td>
<td>-0.00880724</td>
<td>0.00088428</td>
<td>-0.00969152</td>
</tr>
<tr>
<td>64</td>
<td>-0.00465393</td>
<td>0.00364920</td>
<td>-0.00830314</td>
</tr>
<tr>
<td>65</td>
<td>0.01206447</td>
<td>0.00011233</td>
<td>0.01195214</td>
</tr>
<tr>
<td>66</td>
<td>0.00390844</td>
<td>0.00419150</td>
<td>-0.00028306</td>
</tr>
<tr>
<td>67</td>
<td>-0.00824155</td>
<td>-0.00021133</td>
<td>-0.00803022</td>
</tr>
<tr>
<td>68</td>
<td>0.00338588</td>
<td>-0.00231108</td>
<td>0.00569696</td>
</tr>
<tr>
<td>69</td>
<td>0.01148996</td>
<td>-0.00042801</td>
<td>0.01191797</td>
</tr>
<tr>
<td>70</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>0.00373235</td>
<td>0.00173363</td>
<td>0.00199872</td>
</tr>
<tr>
<td>72</td>
<td>-0.00249441</td>
<td>-0.00336334</td>
<td>0.00086892</td>
</tr>
<tr>
<td>73</td>
<td>-0.00895718</td>
<td>-0.00647935</td>
<td>-0.00247783</td>
</tr>
<tr>
<td>74</td>
<td>-0.00055504</td>
<td>-0.00220978</td>
<td>0.00165474</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>-0.00101879</td>
<td>-0.00733749</td>
<td>0.00631869</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>-0.00948479</td>
<td>-0.00239847</td>
<td>-0.00708631</td>
</tr>
<tr>
<td>78</td>
<td>0.02529819</td>
<td>0.00441379</td>
<td>0.02088441</td>
</tr>
<tr>
<td>79</td>
<td>-0.00176558</td>
<td>-0.00145843</td>
<td>-0.00030715</td>
</tr>
<tr>
<td>80</td>
<td>0.00254141</td>
<td>0.00458026</td>
<td>-0.00203885</td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>0.00706038</td>
<td>0.00606889</td>
<td>0.00099150</td>
</tr>
<tr>
<td>84</td>
<td>0.01219224</td>
<td>0.00372839</td>
<td>0.00846384</td>
</tr>
<tr>
<td>85</td>
<td>0.00323661</td>
<td>-0.00088391</td>
<td>0.00412052</td>
</tr>
<tr>
<td>86</td>
<td>-0.01011941</td>
<td>0.00161196</td>
<td>-0.01173137</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>-0.00973002</td>
<td>0.00081720</td>
<td>-0.01054722</td>
</tr>
<tr>
<td>89</td>
<td>-0.00377297</td>
<td>-0.00081405</td>
<td>-0.00295892</td>
</tr>
<tr>
<td>90</td>
<td>0.00000000</td>
<td>-0.00292264</td>
<td>0.00292264</td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>-0.00899678</td>
<td>-0.00738652</td>
<td>-0.00161026</td>
</tr>
<tr>
<td>93</td>
<td>-0.00437116</td>
<td>-0.00344564</td>
<td>-0.00092552</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>0.00900467</td>
<td>-0.00095734</td>
<td>0.00996201</td>
</tr>
<tr>
<td>96</td>
<td>-0.01688949</td>
<td>-0.00265369</td>
<td>-0.01423580</td>
</tr>
<tr>
<td>97</td>
<td>-0.00154308</td>
<td>-0.00533915</td>
<td>0.00379606</td>
</tr>
<tr>
<td>98</td>
<td>-0.00930206</td>
<td>-0.00625318</td>
<td>-0.00304888</td>
</tr>
<tr>
<td>99</td>
<td>-0.01385837</td>
<td>-0.00426129</td>
<td>-0.00959709</td>
</tr>
<tr>
<td>100</td>
<td>-0.00631026</td>
<td>-0.00094012</td>
<td>-0.00537014</td>
</tr>
<tr>
<td>101</td>
<td>0.00181171</td>
<td>-0.00149526</td>
<td>0.00330697</td>
</tr>
<tr>
<td>102</td>
<td>0.00721551</td>
<td>0.00124454</td>
<td>0.00597098</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>0.00279281</td>
<td>0.00251920</td>
<td>0.00027361</td>
</tr>
<tr>
<td>105</td>
<td>0.00002456</td>
<td>-0.00242410</td>
<td>0.00244866</td>
</tr>
<tr>
<td>106</td>
<td>0.00135576</td>
<td>-0.00226272</td>
<td>0.00361849</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>-0.00918356</td>
<td>0.00188114</td>
<td>-0.01106470</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>112 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.01086061</td>
<td>0.00157667</td>
<td>0.00928394</td>
</tr>
<tr>
<td>114</td>
<td>0.00841630</td>
<td>0.00044560</td>
<td>0.00797070</td>
</tr>
<tr>
<td>115 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>-0.00241315</td>
<td>0.00666104</td>
<td>-0.00907420</td>
</tr>
<tr>
<td>118</td>
<td>0.02438640</td>
<td>0.00485737</td>
<td>0.01952903</td>
</tr>
<tr>
<td>119</td>
<td>0.00173600</td>
<td>0.00005992</td>
<td>0.00167608</td>
</tr>
<tr>
<td>120</td>
<td>-0.00650491</td>
<td>0.00844738</td>
<td>-0.01495229</td>
</tr>
<tr>
<td>121</td>
<td>-0.00560338</td>
<td>-0.00150962</td>
<td>-0.00409376</td>
</tr>
<tr>
<td>122 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>0.00685172</td>
<td>-0.00087106</td>
<td>0.00772278</td>
</tr>
<tr>
<td>124</td>
<td>0.00116865</td>
<td>0.00795161</td>
<td>-0.00678296</td>
</tr>
<tr>
<td>125 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>0.00416139</td>
<td>0.00659723</td>
<td>-0.00243584</td>
</tr>
<tr>
<td>127</td>
<td>-0.00500775</td>
<td>0.00198067</td>
<td>-0.00698841</td>
</tr>
<tr>
<td>128 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>0.00035179</td>
<td>-0.00378571</td>
<td>0.00413750</td>
</tr>
<tr>
<td>130 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>0.00000000</td>
<td>-0.00338984</td>
<td>0.00338984</td>
</tr>
</tbody>
</table>

* Observation was not used in this analysis

Sum of Residuals	0.00000000
Sum of Squared Residuals	0.00582580
Sum of Squared Residuals - Error SS	-0.00000000
First Order Autocorrelation	-0.06831239
Durbin-Watson D	2.12843937
The Mixed Procedure

Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>mrctps</td>
</tr>
<tr>
<td>Covariance Structure</td>
<td>Variance Components</td>
</tr>
<tr>
<td>Subject Effect</td>
<td>pkdid</td>
</tr>
<tr>
<td>Estimation Method</td>
<td>ML</td>
</tr>
<tr>
<td>Residual Variance Method</td>
<td>Profile</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
<td>Model-Based</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
<td>Containment</td>
</tr>
</tbody>
</table>

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>131</td>
<td>200922 201800 201877 203328 204555 205758 206816 208280 208324 209281 213454 214376 215052 216086 220068 223343 223534 223635 224502 226640 229733 232174 234053 234650 234795 235752 236202 237192 239960 241501 242715 243560 243738 244111 244831 245990 246620 247880 248712 252086 255765 256171 258940 263617 264225 264348 265171 268455 271043 271684 273214 273225 277490 281000 281977 283722 283935 285601 286095 290336 292362 293317 293598 294105 294511 295106 295940 298515 299663 300641 300696 300911 301157 301372 303868 304860 306546 312317 313195 313307 313893 316110 318562 320182 320957 321611 323837 325290 327235 327933 331318 333524 334672 336167 336843 337315 342131 343097 343233 354494 358230 359308 364664 367836 368973 369941 370942 371021 374068 374687 376004 376252 380166 380998 383193 383744 385151 386040 386488 386758 387658 392316 393936 394588 397661 397931</td>
</tr>
</tbody>
</table>

Dimensions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance Parameters</td>
<td>3</td>
</tr>
<tr>
<td>Columns in X</td>
<td>2</td>
</tr>
<tr>
<td>Columns in Z Per Subject</td>
<td>2</td>
</tr>
<tr>
<td>Subjects</td>
<td>131</td>
</tr>
<tr>
<td>Max Obs Per Subject</td>
<td>4</td>
</tr>
<tr>
<td>Observations Used</td>
<td>445</td>
</tr>
<tr>
<td>Observations Not Used</td>
<td>79</td>
</tr>
<tr>
<td>Total Observations</td>
<td>524</td>
</tr>
</tbody>
</table>

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>3853.50988301</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3067.83239897</td>
<td>0.00440264</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3061.85312298</td>
<td>0.00076131</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3060.89846061</td>
<td>0.00003234</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3060.8610844</td>
<td>0.00000007</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3060.86102931</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>pkdid</td>
<td>329.25</td>
</tr>
<tr>
<td>visc</td>
<td>pkdid</td>
<td>0</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>16.5432</td>
</tr>
</tbody>
</table>

Fit Statistics

- -2 Log Likelihood: 3060.9
- AIC (smaller is better): 3068.9
- AICC (smaller is better): 3069.0
- BIC (smaller is better): 3080.4

Solution for Fixed Effects

| Effect | Estimate | Standard Error | DF | t Value | Pr > |t| |
|--------|----------|----------------|----|---------|------|---|
| Intercept | 41.4714 | 1.6146 | 130 | 25.69 | <.0001 |
| visc | 2.8954 | 0.1823 | 125 | 15.88 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|-------|
| Intercept | 200922 | -3.7546 | 2.8103 | 188 | -1.34 | 0.1832 |
| visc | 200922 | 0 | . | . | . | . |
| Intercept | 201800 | 37.3116 | 2.5648 | 188 | 14.55 | <.0001 |
| visc | 201800 | 0 | . | . | . | . |
| Intercept | 201877 | 4.6858 | 2.5647 | 188 | 1.83 | 0.0693 |
| visc | 201877 | 0 | . | . | . | . |
| Intercept | 203328 | 14.2445 | 2.5651 | 188 | 5.55 | <.0001 |
| visc | 203328 | 0 | . | . | . | . |
| Intercept | 204555 | 11.5596 | 2.8097 | 188 | 4.11 | <.0001 |
| visc | 204555 | 0 | . | . | . | . |
| Intercept | 205758 | 15.1225 | 2.8100 | 188 | 5.38 | <.0001 |
| visc | 205758 | 0 | . | . | . | . |
| Intercept | 206816 | 12.5110 | 2.8100 | 188 | 4.45 | <.0001 |
| visc | 206816 | 0 | . | . | . | . |
| Intercept | 208280 | -11.1823 | 2.5647 | 188 | -4.36 | <.0001 |
| visc | 208280 | 0 | . | . | . | . |
| Intercept | 208324 | -3.5577 | 2.5647 | 188 | -1.39 | 0.1670 |
| visc | 208324 | 0 | . | . | . | . |
| Intercept | 209281 | -2.9106 | 2.8100 | 188 | -1.04 | 0.3016 |
| visc | 209281 | 0 | . | . | . | . |
| Intercept | 213454 | -21.6323 | 2.5649 | 188 | -8.43 | <.0001 |
| visc | 213454 | 0 | . | . | . | . |
| Intercept | 214376 | -8.1542 | 2.8100 | 188 | -2.90 | 0.0042 |
| visc | 214376 | 0 | . | . | . | . |
| Intercept | 215052 | -11.1776 | 2.8100 | 188 | -3.98 | <.0001 |
| visc | 215052 | 0 | . | . | . | . |
| Intercept | 216086 | 22.9515 | 2.5647 | 188 | 8.95 | <.0001 |
| visc | 216086 | 0 | . | . | . | . |
| Intercept | 220068 | 30.3519 | 2.8100 | 188 | 10.80 | <.0001 |
| visc | 220068 | 0 | . | . | . | . |
| Intercept | 223343 | 9.6299 | 2.5648 | 188 | 3.75 | 0.0002 |
| visc | 223343 | 0 | . | . | . | . |
| Intercept | 223534 | 12.2712 | 2.8100 | 188 | 4.37 | <.0001 |
| visc | 223534 | 0 | . | . | . | . |
| Intercept | 223635 | -22.9023 | 2.8098 | 188 | -8.15 | <.0001 |
The Mixed Procedure

| Effect | Participant/ID Number | Estimate | Std Err | DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|----|---------|------|---|
| visc | 223635 | 0 | . | . | . | | |
| Intercept | 224502 | 2.2580 | 2.8097 | 188| 0.80 | 0.4226| |
| visc | 224502 | 0 | . | . | . | | |
| Intercept | 226640 | 10.4968 | 2.5647 | 188| 4.09 | <.0001| |
| visc | 226640 | 0 | . | . | . | | |
| Intercept | 229428 | 7.9663 | 2.8100 | 188| 2.83 | 0.0051| |
| visc | 229428 | 0 | . | . | . | | |
| Intercept | 229733 | 10.5845 | 2.8101 | 188| 3.77 | 0.0002| |
| visc | 229733 | 0 | . | . | . | | |
| Intercept | 232174 | -7.0476 | 2.8097 | 188| -2.51 | 0.0130| |
| visc | 232174 | 0 | . | . | . | | |
| Intercept | 234053 | 19.5031 | 2.5646 | 188| 7.60 | <.0001| |
| visc | 234053 | 0 | . | . | . | | |
| Intercept | 234650 | 6.0678 | 2.5646 | 188| 2.37 | 0.0190| |
| visc | 234650 | 0 | . | . | . | | |
| Intercept | 234795 | -27.0646 | 4.2562 | 188| -6.36 | <.0001| |
| visc | 234795 | 0 | . | . | . | | |
| Intercept | 235752 | -2.8372 | 2.8099 | 188| -1.01 | 0.3139| |
| visc | 235752 | 0 | . | . | . | | |
| Intercept | 236202 | 26.7109 | 2.5647 | 188| 10.41 | <.0001| |
| visc | 236202 | 0 | . | . | . | | |
| Intercept | 237192 | 15.5245 | 2.5648 | 188| 6.05 | <.0001| |
| visc | 237192 | 0 | . | . | . | | |
| Intercept | 239960 | 18.6316 | 2.8100 | 188| 6.63 | <.0001| |
| visc | 239960 | 0 | . | . | . | | |
| Intercept | 241501 | -39.7451 | 2.5659 | 188| -15.49 | <.0001| |
| visc | 241501 | 0 | . | . | . | | |
| Intercept | 242715 | -8.3198 | 2.5649 | 188| -3.24 | 0.0014| |
| visc | 242715 | 0 | . | . | . | | |
| Intercept | 243560 | -29.1396 | 2.8100 | 188| -10.37 | <.0001| |
| visc | 243560 | 0 | . | . | . | | |
| Intercept | 243738 | 20.1938 | 2.8100 | 188| 7.19 | <.0001| |
| visc | 243738 | 0 | . | . | . | | |
| Intercept | 244111 | -3.6033 | 2.5651 | 188| -1.40 | 0.1618| |
| visc | 244111 | 0 | . | . | . | | |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|---------|-----------------------|----------|--------------|-----|---------|------|-----|
| Intercept | 244831 | -17.5599 | 2.8098 | 188 | -6.25 | <.0001 | |
| visc | 244831 | 0 | . | . | . | . | |
| Intercept | 245990 | -34.2231 | 2.8101 | 188 | -12.18 | <.0001 | |
| visc | 245990 | 0 | . | . | . | . | |
| Intercept | 246620 | -21.5209 | 2.5650 | 188 | -8.39 | <.0001 | |
| visc | 246620 | 0 | . | . | . | . | |
| Intercept | 247880 | -19.9069 | 2.5651 | 188 | -7.76 | <.0001 | |
| visc | 247880 | 0 | . | . | . | . | |
| Intercept | 248712 | -9.1598 | 2.5650 | 188 | -3.57 | 0.0005 | |
| visc | 248712 | 0 | . | . | . | . | |
| Intercept | 252086 | 10.1722 | 2.8098 | 188 | 3.62 | 0.0004 | |
| visc | 252086 | 0 | . | . | . | . | |
| Intercept | 255765 | -4.5835 | 2.5647 | 188 | -1.79 | 0.0755 | |
| visc | 255765 | 0 | . | . | . | . | |
| Intercept | 256171 | -9.7960 | 2.5644 | 188 | -3.82 | 0.0002 | |
| visc | 256171 | 0 | . | . | . | . | |
| Intercept | 258950 | 21.0065 | 3.2430 | 188 | 6.48 | <.0001 | |
| visc | 258950 | 0 | . | . | . | . | |
| Intercept | 259940 | -11.8039 | 4.2562 | 188 | -2.77 | 0.0061 | |
| visc | 259940 | 0 | . | . | . | . | |
| Intercept | 263617 | -15.0218 | 2.5648 | 188 | -5.86 | <.0001 | |
| visc | 263617 | 0 | . | . | . | . | |
| Intercept | 264225 | 0.7590 | 2.5648 | 188 | 0.30 | 0.7676 | |
| visc | 264225 | 0 | . | . | . | . | |
| Intercept | 264348 | -8.6932 | 2.5646 | 188 | -3.39 | 0.0009 | |
| visc | 264348 | 0 | . | . | . | . | |
| Intercept | 265171 | -39.6192 | 2.8100 | 188 | -14.10 | <.0001 | |
| visc | 265171 | 0 | . | . | . | . | |
| Intercept | 268455 | 27.4513 | 2.5650 | 188 | 10.70 | <.0001 | |
| visc | 268455 | 0 | . | . | . | . | |
| Intercept | 271043 | -14.9600 | 2.8102 | 188 | -5.32 | <.0001 | |
| visc | 271043 | 0 | . | . | . | . | |
| Intercept | 271460 | -23.1863 | 2.5647 | 188 | -9.04 | <.0001 | |
| visc | 271460 | 0 | . | . | . | . | |
| Intercept | 271662 | 17.1510 | 3.2433 | 188 | 5.29 | <.0001 | |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|------|---|
| visc | 271662 | 0 | . | . | . | | |
| Intercept | 271684 | -12.0453 | 2.8099 | 188 | -4.29 | <.0001|
| visc | 271684 | 0 | . | . | . | | |
| Intercept | 273214 | 8.6111 | 2.5644 | 188 | 3.36 | 0.0010|
| visc | 273214 | 0 | . | . | . | | |
| Intercept | 273225 | 17.0310 | 3.2405 | 188 | 5.26 | <.0001|
| visc | 273225 | 0 | . | . | . | | |
| Intercept | 277490 | 17.6451 | 3.2430 | 188 | 5.44 | <.0001|
| visc | 277490 | 0 | . | . | . | | |
| Intercept | 281000 | -3.0643 | 2.5646 | 188 | -1.19 | 0.2337|
| visc | 281000 | 0 | . | . | . | | |
| Intercept | 281977 | 14.0661 | 2.5648 | 188 | 5.48 | <.0001|
| visc | 281977 | 0 | . | . | . | | |
| Intercept | 283722 | 7.5297 | 2.8102 | 188 | 2.68 | 0.0080|
| visc | 283722 | 0 | . | . | . | | |
| Intercept | 283935 | 19.8779 | 2.8098 | 188 | 7.07 | <.0001|
| visc | 283935 | 0 | . | . | . | | |
| Intercept | 285601 | 28.7236 | 2.5648 | 188 | 11.20 | <.0001|
| visc | 285601 | 0 | . | . | . | | |
| Intercept | 286095 | -3.4491 | 2.5647 | 188 | -1.34 | 0.1803|
| visc | 286095 | 0 | . | . | . | | |
| Intercept | 290336 | -10.6486 | 2.5650 | 188 | -4.15 | <.0001|
| visc | 290336 | 0 | . | . | . | | |
| Intercept | 292362 | 31.8640 | 2.5653 | 188 | 12.42 | <.0001|
| visc | 292362 | 0 | . | . | . | | |
| Intercept | 293317 | 26.1329 | 2.8102 | 188 | 9.30 | <.0001|
| visc | 293317 | 0 | . | . | . | | |
| Intercept | 293598 | 32.2197 | 2.8098 | 188 | 11.47 | <.0001|
| visc | 293598 | 0 | . | . | . | | |
| Intercept | 294105 | 24.7597 | 3.2425 | 188 | 7.64 | <.0001|
| visc | 294105 | 0 | . | . | . | | |
| Intercept | 294511 | -0.3495 | 2.8099 | 188 | -0.12 | 0.9011|
| visc | 294511 | 0 | . | . | . | | |
| Intercept | 295106 | -12.2558 | 2.5649 | 188 | -4.78 | <.0001|
| visc | 295106 | 0 | . | . | . | | |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|---------|------|---|
| Intercept | 295940 | 8.8838 | 2.5647 | 188 | 3.46 | 0.0007 |
| visc | 295940 | 0 | . | . | . | . |
| Intercept | 298515 | 24.8759 | 2.8101 | 188 | 8.85 | <.0001 |
| visc | 298515 | 0 | . | . | . | . |
| Intercept | 299663 | -11.9370 | 2.5650 | 188 | -4.65 | <.0001 |
| visc | 299663 | 0 | . | . | . | . |
| Intercept | 300641 | -17.5459 | 2.8101 | 188 | -6.24 | <.0001 |
| visc | 300641 | 0 | . | . | . | . |
| Intercept | 300696 | 3.5985 | 2.5648 | 188 | 1.40 | 0.1622 |
| visc | 300696 | 0 | . | . | . | . |
| Intercept | 300911 | 17.2581 | 2.8100 | 188 | 6.14 | <.0001 |
| visc | 300911 | 0 | . | . | . | . |
| Intercept | 301157 | 18.3281 | 2.5647 | 188 | 7.15 | <.0001 |
| visc | 301157 | 0 | . | . | . | . |
| Intercept | 301372 | -2.9695 | 2.8097 | 188 | -1.06 | 0.2919 |
| visc | 301372 | 0 | . | . | . | . |
| Intercept | 303868 | -33.6812 | 2.5648 | 188 | -13.13 | <.0001 |
| visc | 303868 | 0 | . | . | . | . |
| Intercept | 304860 | 16.5502 | 2.5646 | 188 | 6.45 | <.0001 |
| visc | 304860 | 0 | . | . | . | . |
| Intercept | 306546 | -12.6974 | 2.5648 | 188 | -4.95 | <.0001 |
| visc | 306546 | 0 | . | . | . | . |
| Intercept | 312317 | -12.4790 | 2.8101 | 188 | -4.44 | <.0001 |
| visc | 312317 | 0 | . | . | . | . |
| Intercept | 313195 | 10.3924 | 2.8100 | 188 | 3.70 | 0.0003 |
| visc | 313195 | 0 | . | . | . | . |
| Intercept | 313307 | 0.6239 | 2.5647 | 188 | 0.24 | 0.8081 |
| visc | 313307 | 0 | . | . | . | . |
| Intercept | 313893 | -25.0715 | 2.5647 | 188 | -9.78 | <.0001 |
| visc | 313893 | 0 | . | . | . | . |
| Intercept | 316110 | -18.4034 | 2.5647 | 188 | -7.18 | <.0001 |
| visc | 316110 | 0 | . | . | . | . |
| Intercept | 318562 | -15.8195 | 2.5646 | 188 | -6.17 | <.0001 |
| visc | 318562 | 0 | . | . | . | . |
| Intercept | 320182 | 6.5004 | 2.8100 | 188 | 2.31 | 0.0218 |
The Mixed Procedure

Solution for Random Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Participant/ID Number</th>
<th>Estimate</th>
<th>Std Err Pred</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>320182</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>320957</td>
<td>-31.7800</td>
<td>2.8101</td>
<td>188</td>
<td>-11.31</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>320957</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>321611</td>
<td>26.0256</td>
<td>4.2562</td>
<td>188</td>
<td>6.11</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>321611</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>323837</td>
<td>-13.9005</td>
<td>2.5649</td>
<td>188</td>
<td>-5.42</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>323837</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>325290</td>
<td>13.1192</td>
<td>2.5646</td>
<td>188</td>
<td>5.12</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>325290</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>327055</td>
<td>-15.2898</td>
<td>2.5646</td>
<td>188</td>
<td>-5.96</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>327055</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>327325</td>
<td>-11.0272</td>
<td>2.5648</td>
<td>188</td>
<td>-4.30</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>327325</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>327933</td>
<td>-10.6919</td>
<td>2.5647</td>
<td>188</td>
<td>-4.17</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>327933</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>331318</td>
<td>-33.9721</td>
<td>2.5647</td>
<td>188</td>
<td>-13.25</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>331318</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>333524</td>
<td>26.8604</td>
<td>2.8100</td>
<td>188</td>
<td>9.56</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>333524</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>334672</td>
<td>14.7675</td>
<td>2.5651</td>
<td>188</td>
<td>5.76</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>334672</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>336167</td>
<td>-4.9404</td>
<td>2.5644</td>
<td>188</td>
<td>-1.93</td>
<td>0.0555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>336167</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>336843</td>
<td>-3.0746</td>
<td>2.5647</td>
<td>188</td>
<td>-1.20</td>
<td>0.2321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>336843</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>337315</td>
<td>-10.1441</td>
<td>2.5647</td>
<td>188</td>
<td>-3.96</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>337315</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>342131</td>
<td>-3.4719</td>
<td>2.8099</td>
<td>188</td>
<td>-1.24</td>
<td>0.2182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>342131</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>343097</td>
<td>17.3839</td>
<td>2.5647</td>
<td>188</td>
<td>6.78</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>343097</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>343233</td>
<td>1.4785</td>
<td>2.5646</td>
<td>188</td>
<td>0.58</td>
<td>0.5650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>343233</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>354494</td>
<td>-6.3721</td>
<td>3.2406</td>
<td>188</td>
<td>-1.97</td>
<td>0.0507</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>354494</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|-------|---|
| Intercept 358230 | -2.6767 | 2.5647 | 188 | -1.04 | 0.2980 |
| visc 358230 | 0 | . | . | . | . |
| Intercept 359308 | 0.8505 | 2.5647 | 188 | 0.33 | 0.7405 |
| visc 359308 | 0 | . | . | . | . |
| Intercept 364664 | -34.4069 | 2.5647 | 188 | -13.42 | <.0001 |
| visc 364664 | 0 | . | . | . | . |
| Intercept 367836 | 21.6003 | 2.8102 | 188 | 7.69 | <.0001 |
| visc 367836 | 0 | . | . | . | . |
| Intercept 368973 | -4.1114 | 2.8100 | 188 | -1.46 | 0.1451 |
| visc 368973 | 0 | . | . | . | . |
| Intercept 369941 | -36.9919 | 3.2430 | 188 | -11.41 | <.0001 |
| visc 369941 | 0 | . | . | . | . |
| Intercept 370942 | -37.8678 | 2.8101 | 188 | -13.48 | <.0001 |
| visc 370942 | 0 | . | . | . | . |
| Intercept 371021 | -27.5648 | 2.5647 | 188 | -10.75 | <.0001 |
| visc 371021 | 0 | . | . | . | . |
| Intercept 374068 | -21.4504 | 2.8098 | 188 | -7.60 | <.0001 |
| visc 374068 | 0 | . | . | . | . |
| Intercept 374687 | -10.5257 | 2.8100 | 188 | -3.75 | 0.0002 |
| visc 374687 | 0 | . | . | . | . |
| Intercept 376004 | 21.554 | 2.8101 | 188 | 7.67 | <.0001 |
| visc 376004 | 0 | . | . | . | . |
| Intercept 376252 | -12.1916 | 2.5646 | 188 | -4.75 | <.0001 |
| visc 376252 | 0 | . | . | . | . |
| Intercept 380166 | -11.6677 | 2.5646 | 188 | -4.55 | <.0001 |
| visc 380166 | 0 | . | . | . | . |
| Intercept 380998 | 13.6548 | 2.5647 | 188 | 5.32 | <.0001 |
| visc 380998 | 0 | . | . | . | . |
| Intercept 383193 | -14.5130 | 2.5647 | 188 | -5.66 | <.0001 |
| visc 383193 | 0 | . | . | . | . |
| Intercept 383744 | 16.9576 | 2.8097 | 188 | 6.04 | <.0001 |
| visc 383744 | 0 | . | . | . | . |
| Intercept 385151 | -8.9671 | 4.2562 | 188 | -2.11 | 0.0365 |
| visc 385151 | 0 | . | . | . | . |
| Intercept 386040 | 16.1178 | 2.8111 | 188 | 5.73 | <.0001 |
The Mixed Procedure

Solution for Random Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Participant/ID Number</th>
<th>Estimate</th>
<th>Std Err Pred</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>386040</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>386488</td>
<td>6.4658</td>
<td>2.8100</td>
<td>188</td>
<td>2.30</td>
<td>0.0225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>386488</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>386758</td>
<td>15.4128</td>
<td>2.5648</td>
<td>188</td>
<td>6.01</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>386758</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>387658</td>
<td>4.2520</td>
<td>2.5648</td>
<td>188</td>
<td>1.66</td>
<td>0.0990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>387658</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>392316</td>
<td>4.5050</td>
<td>2.5647</td>
<td>188</td>
<td>1.76</td>
<td>0.0806</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>392316</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>393936</td>
<td>7.9252</td>
<td>2.8100</td>
<td>188</td>
<td>2.82</td>
<td>0.0053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>393936</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>394588</td>
<td>21.0762</td>
<td>2.8101</td>
<td>188</td>
<td>7.50</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>394588</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>397661</td>
<td>16.3574</td>
<td>2.5647</td>
<td>188</td>
<td>6.38</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>397661</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>397931</td>
<td>6.1262</td>
<td>4.2562</td>
<td>188</td>
<td>1.44</td>
<td>0.1517</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>397931</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>1</td>
<td>125</td>
<td>252.16</td>
<td><.0001</td>
</tr>
</tbody>
</table>
The MEANS Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>N</th>
<th>Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>Participant/ID Number</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>slope</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>SlpSE</td>
<td>Std Err Pred</td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>pccn</td>
<td>PCC/Number</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>dvdate</td>
<td>Visit/Date/#3 (1)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>vis</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>urine24_c</td>
<td>24hr Urine (dL/24hr)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>surice_ca</td>
<td>Serum:Uric Acid (mg/dL) (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>albe_ca</td>
<td>Urine:Albumin Excr (mg/24hr) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ecitre_ca</td>
<td>Urine:Citrate Excr (mg/24h) (c)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>esode_cc</td>
<td>Urine:Sodium Excr (mEq/24h) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>xbvdate</td>
<td>Visit/Date</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>cic</td>
<td>Correct Iothalamate Clear # 10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>bsa_c</td>
<td>BSA (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>hdyn</td>
<td>Hypertension yes/no # 12</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>bmi_c</td>
<td>BMI (c)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>age</td>
<td>Age of participant</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>MDRD GFR</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrskvs</td>
<td>MR K Vol/Sum Ster</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrrcvs</td>
<td>MR C Vol/Sum Reg</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>visc</td>
<td>Relative Visit</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>mrctps</td>
<td>Percent MR Cyst Vol</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lrnrskvs</td>
<td>Log10 MR K Vol/Sum Ster</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lrnrcvs</td>
<td>Log10 MR C Vol/Sum Reg</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>llalbe_ca</td>
<td>Log10 Urine:Albumin Excr (mg/24hr) (c)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>llectire_ca</td>
<td>Log10 Urine:Citrate Excr (mg/24h) (c)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>lMDRD_GFR</td>
<td>Log10 MDRD GFR</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lrbf</td>
<td>Log10 Renal Blood Flow Corrected for BSA</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>lrvr</td>
<td>Log10 RVR corrected for BSA</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>lrpf</td>
<td>Log10 Renal Plasma Flow</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>lff</td>
<td>Log10 Filtration Fraction</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>race</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>sex</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>ind1_cic</td>
<td>CIC < or >= 100?</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ind2_cic</td>
<td>CIC < or >= 85?</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>genetyp</td>
<td>Gene Type</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Avgsystol</td>
<td>Average Systolic BP over years</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Avgdiastol</td>
<td>Average Diastolic BP over years</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
The GLM Procedure

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>2</td>
<td>Female, Male</td>
</tr>
<tr>
<td>hdyn</td>
<td>2</td>
<td>N, Y</td>
</tr>
</tbody>
</table>

Number of observations 131

NOTE: Due to missing values, only 106 observations can be used in this analysis.
The GLM Procedure

Dependent Variable: slope

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Error</td>
<td>93</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>105</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coeff Var</th>
<th>Root MSE</th>
<th>slope Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000000</td>
<td>.</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>hdyn</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>lrbf</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>bsa_c</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>cic</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>urine24_c</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>esode_cc</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>surice_ca</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-----------|----------|----------------|---------|------|---|
| Intercept | 0 | 0 | 0 | . | . |
| sex | Female | 0 | 0 | . | . |
| sex | Male | 0 | 0 | . | . |
| hdyn | N | 0 | 0 | . | . |
| hdyn | Y | 0 | 0 | . | . |
| age | 0 | 0 | | . | . |
| lrbf | 0 | 0 | 0 | . | . |
| bsa_c | 0 | 0 | 0 | . | . |
| cic | 0 | 0 | | . | . |
| urine24_c | 0 | 0 | 0 | . | . |
| esode_cc | 0 | 0 | 0 | . | . |
| lalbe_ca | 0 | 0 | 0 | . | . |
The GLM Procedure

Dependent Variable: slope

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-------------|----------|----------------|---------|------|---|
| lphdle_ca | 0 | 0 | . | . | |
| lphdle_ca | 0 | 0 | . | . | |
| surice_ca | 0 | 0 | . | . | |

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>15</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>16</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>17</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>18</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>19</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>20</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>21</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>22</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>25</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>26</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>27</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>28</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>29</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>30</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>31</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>32</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>33</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>34</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>36</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>37</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>39</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>40</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>41</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>42</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>43</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>45</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>46</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>47</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>48</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>49</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>50</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>51</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>52</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>53</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>54</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>55</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>56</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>57</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>59</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>60</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>61</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>62</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>63</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>64</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>65</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>66</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>67</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>68</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>69</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>70</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>72</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>73</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>74</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>76 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>78</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>79</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>80</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>81 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>84</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>85</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>86</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>87 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>89</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>90 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>93</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>94 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>96</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>97</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>98</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>99</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>100</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>101</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>102</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>103 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>105</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>106</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>107 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>109 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 *</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>112 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>114</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>115 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>118</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>119</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>120</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>121</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>122 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>124</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>125 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>127</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>128 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>130 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

* Observation was not used in this analysis

<table>
<thead>
<tr>
<th>Summary Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Residuals</td>
</tr>
<tr>
<td>Sum of Squared Residuals</td>
</tr>
<tr>
<td>Sum of Squared Residuals - Error SS</td>
</tr>
<tr>
<td>First Order Autocorrelation</td>
</tr>
<tr>
<td>Durbin-Watson D</td>
</tr>
</tbody>
</table>
Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>mrcpts</td>
</tr>
<tr>
<td>Covariance Structure</td>
<td>Variance Components</td>
</tr>
<tr>
<td>Subject Effect</td>
<td>pkdid</td>
</tr>
<tr>
<td>Estimation Method</td>
<td>ML</td>
</tr>
<tr>
<td>Residual Variance Method</td>
<td>Profile</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
<td>Model-Based</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
<td>Containment</td>
</tr>
</tbody>
</table>

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>131</td>
<td>200922 201800 201877 203328 204555 205758 206816 208280 208324 209281 213454 214376 215052 216086 220068 223343 223534 223635 224502 226640 229428 229733 232174 234053 234650 234795 235752 236202 237192 239960 241501 242715 243560 243738 244111 244831 245990 246620 247880 248712 252086 255765 256171 258940 259940 263617 264225 264348 265171 268455 271043 271460 271662 271684 273214 273225 277490 281000 281977 283722 283935 285601 286095 290336 292362 293317 293598 294105 294511 295106 295940 298515 299663 300641 300696 300911 301157 301372 303868 304860 305290 320182 320957 321611 323837 325290 327325 327933 331318 333524 334672 336167 336843 337315 342131 343097 343233 354494 354820 359308 359939 364664 367836 368973 369941 370942 371021 374068 374687 376004 376252 380166 380998 383193 383744 385151 386040 386488 386758 387658 392316 393936 394588 397661 397931</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance Parameters</td>
<td>3</td>
</tr>
<tr>
<td>Columns in X</td>
<td>2</td>
</tr>
<tr>
<td>Columns in Z Per Subject</td>
<td>2</td>
</tr>
<tr>
<td>Subjects</td>
<td>131</td>
</tr>
<tr>
<td>Max Obs Per Subject</td>
<td>4</td>
</tr>
<tr>
<td>Observations Used</td>
<td>445</td>
</tr>
<tr>
<td>Observations Not Used</td>
<td>79</td>
</tr>
<tr>
<td>Total Observations</td>
<td>524</td>
</tr>
</tbody>
</table>

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>3853.50988301</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3067.83239897</td>
<td>0.00440264</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3061.8512298</td>
<td>0.00076131</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3060.89846061</td>
<td>0.00003234</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3060.86110844</td>
<td>0.00000097</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3060.86102931</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Convergence criteria met.

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>pkdid</td>
<td>329.25</td>
</tr>
<tr>
<td>visc</td>
<td>pkdid</td>
<td>0</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>16.5432</td>
</tr>
</tbody>
</table>

Fit Statistics

-2 Log Likelihood: 3060.9
AIC (smaller is better): 3068.9
AICC (smaller is better): 3069.0
BIC (smaller is better): 3080.4

Solution for Fixed Effects

| Effect | Estimate | Standard Error | DF | t Value | Pr > |t| |
|--------|----------|----------------|-----|---------|------|---|
| Intercept | 41.4714 | 1.6146 | 130 | 25.69 | <.001|
| visc | 2.8954 | 0.1823 | 125 | 15.88 | <.001|

The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|-----|---------|------|---|
| Intercept | 200922 | -3.7546 | 2.8103 | 188 | -1.34 | 0.1832 |
| visc | 200922 | 0 | . | . | . | . |
| Intercept | 201800 | 37.3116 | 2.5648 | 188 | 14.55 | <.0001 |
| visc | 201800 | 0 | . | . | . | . |
| Intercept | 201877 | 4.6858 | 2.5647 | 188 | 1.83 | 0.0693 |
| visc | 201877 | 0 | . | . | . | . |
| Intercept | 203328 | 14.2445 | 2.5651 | 188 | 5.55 | <.0001 |
| visc | 203328 | 0 | . | . | . | . |
| Intercept | 204555 | 11.5596 | 2.8097 | 188 | 4.11 | <.0001 |
| visc | 204555 | 0 | . | . | . | . |
| Intercept | 205758 | 15.1225 | 2.8100 | 188 | 5.38 | <.0001 |
| visc | 205758 | 0 | . | . | . | . |
| Intercept | 206816 | 12.5110 | 2.8100 | 188 | 4.45 | <.0001 |
| visc | 206816 | 0 | . | . | . | . |
| Intercept | 208280 | -11.1823 | 2.5647 | 188 | -4.36 | <.0001 |
| visc | 208280 | 0 | . | . | . | . |
| Intercept | 208324 | -3.5577 | 2.5647 | 188 | -1.39 | 0.1670 |
| visc | 208324 | 0 | . | . | . | . |
| Intercept | 209281 | -2.9106 | 2.8100 | 188 | -1.04 | 0.3016 |
| visc | 209281 | 0 | . | . | . | . |
| Intercept | 213454 | -21.6323 | 2.5649 | 188 | -8.43 | <.0001 |
| visc | 213454 | 0 | . | . | . | . |
| Intercept | 214376 | -8.1542 | 2.8100 | 188 | -2.90 | 0.0042 |
| visc | 214376 | 0 | . | . | . | . |
| Intercept | 215052 | -11.1776 | 2.8100 | 188 | -3.98 | <.0001 |
| visc | 215052 | 0 | . | . | . | . |
| Intercept | 216086 | 22.9515 | 2.5647 | 188 | 8.95 | <.0001 |
| visc | 216086 | 0 | . | . | . | . |
| Intercept | 220068 | 30.3519 | 2.8100 | 188 | 10.80 | <.0001 |
| visc | 220068 | 0 | . | . | . | . |
| Intercept | 223343 | 9.6299 | 2.5648 | 188 | 3.75 | 0.0002 |
| visc | 223343 | 0 | . | . | . | . |
| Intercept | 223534 | 12.2712 | 2.8100 | 188 | 4.37 | <.0001 |
| visc | 223534 | 0 | . | . | . | . |
| Intercept | 223635 | -22.9023 | 2.8098 | 188 | -8.15 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|----|---------|-------|---|
| visc | 223635 | 0 | . | . | . | . | |
| Intercept | 224502 | 2.2580 | 2.8097 | 188| 0.80 | 0.4226| |
| visc | 224502 | 0 | . | . | . | . | |
| Intercept | 226640 | 10.4968 | 2.5647 | 188| 4.09 | <.0001| |
| visc | 226640 | 0 | . | . | . | . | |
| Intercept | 229428 | 7.9663 | 2.8100 | 188| 2.83 | 0.0051| |
| visc | 229428 | 0 | . | . | . | . | |
| Intercept | 229733 | 10.5845 | 2.8101 | 188| 3.77 | 0.0002| |
| visc | 229733 | 0 | . | . | . | . | |
| Intercept | 232174 | -7.0476 | 2.8097 | 188| -2.51 | 0.0130| |
| visc | 232174 | 0 | . | . | . | . | |
| Intercept | 234053 | 19.5031 | 2.5646 | 188| 7.60 | <.0001| |
| visc | 234053 | 0 | . | . | . | . | |
| Intercept | 234650 | 6.0678 | 2.5646 | 188| 2.37 | 0.0190| |
| visc | 234650 | 0 | . | . | . | . | |
| Intercept | 234795 | -27.0646 | 4.2562 | 188| -6.36 | <.0001| |
| visc | 234795 | 0 | . | . | . | . | |
| Intercept | 235752 | -2.8372 | 2.8099 | 188| -1.01 | 0.3139| |
| visc | 235752 | 0 | . | . | . | . | |
| Intercept | 236202 | 26.7109 | 2.5647 | 188| 10.41 | <.0001| |
| visc | 236202 | 0 | . | . | . | . | |
| Intercept | 237192 | 15.5245 | 2.5648 | 188| 6.05 | <.0001| |
| visc | 237192 | 0 | . | . | . | . | |
| Intercept | 239960 | 18.6316 | 2.8100 | 188| 6.63 | <.0001| |
| visc | 239960 | 0 | . | . | . | . | |
| Intercept | 241501 | -39.7451 | 2.5659 | 188| -15.49 | <.0001| |
| visc | 241501 | 0 | . | . | . | . | |
| Intercept | 242715 | -8.3198 | 2.5649 | 188| -3.24 | 0.0014| |
| visc | 242715 | 0 | . | . | . | . | |
| Intercept | 243560 | -29.1396 | 2.8100 | 188| -10.37 | <.0001| |
| visc | 243560 | 0 | . | . | . | . | |
| Intercept | 243738 | 20.1938 | 2.8100 | 188| 7.19 | <.0001| |
| visc | 243738 | 0 | . | . | . | . | |
| Intercept | 244111 | -3.6033 | 2.5651 | 188| -1.40 | 0.1618| |
| visc | 244111 | 0 | . | . | . | . | |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|-----------------------|----------|--------------|----|---------|------|---|
| Intercept | 244831 | -17.5599 | 2.8098 | 188 | -6.25 | <.0001 |
| viss | 244831 | 0 | . | . | . | . |
| Intercept | 245990 | -34.2231 | 2.8101 | 188 | -12.18 | <.0001 |
| viss | 245990 | 0 | . | . | . | . |
| Intercept | 246620 | -21.5209 | 2.5650 | 188 | -8.39 | <.0001 |
| viss | 246620 | 0 | . | . | . | . |
| Intercept | 247880 | -19.9069 | 2.5651 | 188 | -7.76 | <.0001 |
| viss | 247880 | 0 | . | . | . | . |
| Intercept | 248712 | -9.1598 | 2.5650 | 188 | -3.57 | 0.0005 |
| viss | 248712 | 0 | . | . | . | . |
| Intercept | 252086 | 10.1722 | 2.8098 | 188 | 3.62 | 0.0004 |
| viss | 252086 | 0 | . | . | . | . |
| Intercept | 255765 | -4.5835 | 2.5647 | 188 | -1.79 | 0.0755 |
| viss | 255765 | 0 | . | . | . | . |
| Intercept | 256171 | -9.7960 | 2.5644 | 188 | -3.82 | 0.0002 |
| viss | 256171 | 0 | . | . | . | . |
| Intercept | 258950 | 21.0065 | 2.5644 | 188 | 8.48 | <.0001 |
| viss | 258950 | 0 | . | . | . | . |
| Intercept | 259940 | -11.8039 | 4.2562 | 188 | -2.77 | 0.0061 |
| viss | 259940 | 0 | . | . | . | . |
| Intercept | 263617 | -15.0218 | 2.5648 | 188 | -5.86 | <.0001 |
| viss | 263617 | 0 | . | . | . | . |
| Intercept | 264225 | 0.7590 | 2.5648 | 188 | 0.30 | 0.7676 |
| viss | 264225 | 0 | . | . | . | . |
| Intercept | 264348 | -8.6932 | 2.5646 | 188 | -3.39 | 0.0009 |
| viss | 264348 | 0 | . | . | . | . |
| Intercept | 265171 | -39.6192 | 2.8100 | 188 | -14.10 | <.0001 |
| viss | 265171 | 0 | . | . | . | . |
| Intercept | 268455 | 27.4513 | 2.5650 | 188 | -10.70 | <.0001 |
| viss | 268455 | 0 | . | . | . | . |
| Intercept | 271043 | -14.9600 | 2.8102 | 188 | -5.32 | <.0001 |
| viss | 271043 | 0 | . | . | . | . |
| Intercept | 271460 | -23.1863 | 2.5647 | 188 | -9.04 | <.0001 |
| viss | 271460 | 0 | . | . | . | . |
| Intercept | 271662 | 17.1510 | 3.2433 | 188 | 5.29 | <.0001 |
Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err Pred | DF | t Value | Pr > |t| |
|--------|------------------------|----------|--------------|----|---------|------|---|
| visc | 271662 | 0 | . | . | . | . | |
| Intercept | 271684 | -12.0453 | 2.8099 | 188| -4.29 | <.0001|
| visc | 271684 | 0 | . | . | . | . | |
| Intercept | 273214 | 8.6111 | 2.5644 | 188| 3.36 | 0.0010|
| visc | 273214 | 0 | . | . | . | . | |
| Intercept | 273225 | 17.0310 | 3.2405 | 188| 5.26 | <.0001|
| visc | 273225 | 0 | . | . | . | . | |
| Intercept | 277490 | 17.6451 | 3.2430 | 188| 5.44 | <.0001|
| visc | 277490 | 0 | . | . | . | . | |
| Intercept | 281000 | -3.0643 | 2.5646 | 188| -1.19 | 0.2337|
| visc | 281000 | 0 | . | . | . | . | |
| Intercept | 281977 | 14.0661 | 2.5648 | 188| 5.48 | <.0001|
| visc | 281977 | 0 | . | . | . | . | |
| Intercept | 283722 | 7.5297 | 2.8102 | 188| 2.68 | 0.0080|
| visc | 283722 | 0 | . | . | . | . | |
| Intercept | 283935 | 19.8779 | 2.8098 | 188| 7.07 | <.0001|
| visc | 283935 | 0 | . | . | . | . | |
| Intercept | 285601 | 28.7236 | 2.5648 | 188| 11.20 | <.0001|
| visc | 285601 | 0 | . | . | . | . | |
| Intercept | 286095 | -3.4491 | 2.5647 | 188| -1.34 | 0.1803|
| visc | 286095 | 0 | . | . | . | . | |
| Intercept | 290336 | -10.6486 | 2.5650 | 188| -4.15 | <.0001|
| visc | 290336 | 0 | . | . | . | . | |
| Intercept | 292362 | 31.8640 | 2.5653 | 188| 12.42 | <.0001|
| visc | 292362 | 0 | . | . | . | . | |
| Intercept | 293317 | 26.1329 | 2.8102 | 188| 9.30 | <.0001|
| visc | 293317 | 0 | . | . | . | . | |
| Intercept | 293598 | 32.2197 | 2.8098 | 188| 11.47 | <.0001|
| visc | 293598 | 0 | . | . | . | . | |
| Intercept | 294105 | 24.7597 | 3.2425 | 188| 7.64 | <.0001|
| visc | 294105 | 0 | . | . | . | . | |
| Intercept | 294511 | -0.3495 | 2.8099 | 188| -0.12 | 0.9011|
| visc | 294511 | 0 | . | . | . | . | |
| Intercept | 295106 | -12.2558 | 2.5649 | 188| -4.78 | <.0001|
| visc | 295106 | 0 | . | . | . | . | |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant[ID Number] | Estimate | Std Err | DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|----|---------|-------|----|
| Intercept | 295940 | 8.8838 | 2.5647 | 188 | 3.46 | 0.0007 |
| visc | 295940 | 0 | . | . | . | . |
| Intercept | 298515 | 24.8759 | 2.8101 | 188 | 8.85 | <.0001 |
| visc | 298515 | 0 | . | . | . | . |
| Intercept | 299663 | -11.9370 | 2.5650 | 188 | -4.65 | <.0001 |
| visc | 299663 | 0 | . | . | . | . |
| Intercept | 300641 | -17.5459 | 2.8101 | 188 | -6.24 | <.0001 |
| visc | 300641 | 0 | . | . | . | . |
| Intercept | 300696 | 3.5985 | 2.5648 | 188 | 1.40 | 0.1622 |
| visc | 300696 | 0 | . | . | . | . |
| Intercept | 301157 | 18.3281 | 2.5647 | 188 | 7.15 | <.0001 |
| visc | 301157 | 0 | . | . | . | . |
| Intercept | 301372 | -2.9695 | 2.8097 | 188 | -1.06 | 0.2919 |
| visc | 301372 | 0 | . | . | . | . |
| Intercept | 303868 | -33.6812 | 2.5648 | 188 | -13.13 | <.0001 |
| visc | 303868 | 0 | . | . | . | . |
| Intercept | 304860 | 16.5502 | 2.5646 | 188 | 6.45 | <.0001 |
| visc | 304860 | 0 | . | . | . | . |
| Intercept | 306546 | -12.6974 | 2.5648 | 188 | -4.95 | <.0001 |
| visc | 306546 | 0 | . | . | . | . |
| Intercept | 312317 | -12.4790 | 2.5647 | 188 | -4.44 | <.0001 |
| visc | 312317 | 0 | . | . | . | . |
| Intercept | 313195 | 10.3924 | 2.8100 | 188 | 3.70 | 0.0003 |
| visc | 313195 | 0 | . | . | . | . |
| Intercept | 313307 | 0.6239 | 2.5647 | 188 | 0.24 | 0.8081 |
| visc | 313307 | 0 | . | . | . | . |
| Intercept | 313893 | -25.0715 | 2.5647 | 188 | -9.78 | <.0001 |
| visc | 313893 | 0 | . | . | . | . |
| Intercept | 316110 | -18.4034 | 2.5647 | 188 | -7.18 | <.0001 |
| visc | 316110 | 0 | . | . | . | . |
| Intercept | 318562 | -15.8195 | 2.5646 | 188 | -6.17 | <.0001 |
| visc | 318562 | 0 | . | . | . | . |
| Intercept | 320182 | 6.5004 | 2.8100 | 188 | 2.31 | 0.0218 |
The Mixed Procedure

Solution for Random Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Participant/ID Number</th>
<th>Estimate</th>
<th>Std Err</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>320182</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>320957</td>
<td>-31.7800</td>
<td>2.8101</td>
<td>188</td>
<td>-11.31</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>320957</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>321611</td>
<td>26.0256</td>
<td>4.2562</td>
<td>188</td>
<td>6.11</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>321611</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>323837</td>
<td>-13.9005</td>
<td>2.5649</td>
<td>188</td>
<td>-5.42</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>323837</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>325290</td>
<td>13.1192</td>
<td>2.5646</td>
<td>188</td>
<td>5.12</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>325290</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>327055</td>
<td>-15.2898</td>
<td>2.5647</td>
<td>188</td>
<td>-5.96</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>327055</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>327325</td>
<td>-11.0272</td>
<td>2.5648</td>
<td>188</td>
<td>-4.30</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>327325</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>327933</td>
<td>-10.6919</td>
<td>2.5647</td>
<td>188</td>
<td>-4.17</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>327933</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>331318</td>
<td>-33.9721</td>
<td>2.5647</td>
<td>188</td>
<td>-13.25</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>331318</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>333524</td>
<td>26.8604</td>
<td>2.8100</td>
<td>188</td>
<td>9.56</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>333524</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>334672</td>
<td>14.7675</td>
<td>2.5651</td>
<td>188</td>
<td>5.76</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>334672</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>336167</td>
<td>-4.9404</td>
<td>2.5644</td>
<td>188</td>
<td>-1.93</td>
<td>0.0555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>336167</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>336843</td>
<td>-3.0746</td>
<td>2.5647</td>
<td>188</td>
<td>-1.20</td>
<td>0.2321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>336843</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>337315</td>
<td>-10.1441</td>
<td>2.5647</td>
<td>188</td>
<td>-3.96</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>337315</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>342131</td>
<td>-3.4719</td>
<td>2.8099</td>
<td>188</td>
<td>-1.24</td>
<td>0.2182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>342131</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>343097</td>
<td>17.3839</td>
<td>2.5647</td>
<td>188</td>
<td>6.78</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>343097</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>343233</td>
<td>1.4785</td>
<td>2.5646</td>
<td>188</td>
<td>0.58</td>
<td>0.5650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>343233</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>354494</td>
<td>-6.3721</td>
<td>3.2406</td>
<td>188</td>
<td>-1.97</td>
<td>0.0507</td>
<td></td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>354494</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|------------------------|----------|---------|---------|---------|------|-----|
| Intercept | 358230 | -2.6767 | 2.5647 | 188 | -1.04 | 0.2980 |
| visc | 358230 | 0 | . | . | . | . |
| Intercept | 359308 | 0.8505 | 2.5647 | 188 | 0.33 | 0.7405 |
| visc | 359308 | 0 | . | . | . | . |
| Intercept | 364664 | -34.4069 | 2.5647 | 188 | -13.42 | <.0001 |
| visc | 364664 | 0 | . | . | . | . |
| Intercept | 367836 | 21.6003 | 2.8102 | 188 | 7.69 | <.0001 |
| visc | 367836 | 0 | . | . | . | . |
| Intercept | 368973 | -4.1114 | 2.8100 | 188 | -1.46 | 0.1451 |
| visc | 368973 | 0 | . | . | . | . |
| Intercept | 369941 | -36.9919 | 3.2430 | 188 | -11.41 | <.0001 |
| visc | 369941 | 0 | . | . | . | . |
| Intercept | 370942 | -37.8678 | 2.8101 | 188 | -13.48 | <.0001 |
| visc | 370942 | 0 | . | . | . | . |
| Intercept | 371021 | -27.5648 | 2.5647 | 188 | -10.75 | <.0001 |
| visc | 371021 | 0 | . | . | . | . |
| Intercept | 374068 | -21.4504 | 2.8098 | 188 | -7.63 | <.0001 |
| visc | 374068 | 0 | . | . | . | . |
| Intercept | 374687 | -10.5257 | 2.8100 | 188 | -3.75 | 0.0002 |
| visc | 374687 | 0 | . | . | . | . |
| Intercept | 376004 | 21.5541 | 2.8101 | 188 | 7.67 | <.0001 |
| visc | 376004 | 0 | . | . | . | . |
| Intercept | 376252 | -12.1916 | 2.5646 | 188 | -4.75 | <.0001 |
| visc | 376252 | 0 | . | . | . | . |
| Intercept | 380166 | -11.6677 | 2.5646 | 188 | -4.55 | <.0001 |
| visc | 380166 | 0 | . | . | . | . |
| Intercept | 380998 | 13.6548 | 2.5647 | 188 | 5.32 | <.0001 |
| visc | 380998 | 0 | . | . | . | . |
| Intercept | 383193 | -14.5130 | 2.5647 | 188 | -5.66 | <.0001 |
| visc | 383193 | 0 | . | . | . | . |
| Intercept | 383744 | 16.9576 | 2.8097 | 188 | 6.04 | <.0001 |
| visc | 383744 | 0 | . | . | . | . |
| Intercept | 385151 | -8.9671 | 4.2562 | 188 | -2.11 | 0.0365 |
| visc | 385151 | 0 | . | . | . | . |
| Intercept | 386040 | 16.1178 | 2.8111 | 188 | 5.73 | <.0001 |
The Mixed Procedure

Solution for Random Effects

| Effect | Participant/ID Number | Estimate | Std Err | Pred DF | t Value | Pr > |t| |
|--------|-----------------------|----------|---------|---------|---------|-------|-----|
| visc | 386040 | 0 | . | . | . | | |
| Intercept | 386488 | 6.4658 | 2.8100 | 188 | 2.30 | 0.0225| |
| visc | 386488 | 0 | . | . | . | | |
| Intercept | 386758 | 15.4128 | 2.5648 | 188 | 6.01 | <.0001| |
| visc | 386758 | 0 | . | . | . | | |
| Intercept | 387658 | 4.2520 | 2.5648 | 188 | 1.66 | 0.0990| |
| visc | 387658 | 0 | . | . | . | | |
| Intercept | 392316 | 4.5050 | 2.5647 | 188 | 1.76 | 0.0806| |
| visc | 392316 | 0 | . | . | . | | |
| Intercept | 393936 | 7.9252 | 2.8100 | 188 | 2.82 | 0.0053| |
| visc | 393936 | 0 | . | . | . | | |
| Intercept | 394588 | 21.0762 | 2.8101 | 188 | 7.50 | <.0001| |
| visc | 394588 | 0 | . | . | . | | |
| Intercept | 397661 | 16.3574 | 2.5647 | 188 | 6.38 | <.0001| |
| visc | 397661 | 0 | . | . | . | | |
| Intercept | 397931 | 6.1262 | 4.2562 | 188 | 1.44 | 0.1517| |
| visc | 397931 | 0 | . | . | . | | |

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>visc</td>
<td>1</td>
<td>125</td>
<td>252.16</td>
<td><.0001</td>
</tr>
</tbody>
</table>
The MEANS Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>N</th>
<th>Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkdid</td>
<td>Participant/ID Number</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>slope</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SpSE</td>
<td>Std Err Pred</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>pccn</td>
<td>PCC/Number</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>dvdate</td>
<td>Visit/Date/#3 (1)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>vis</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>urine24_c</td>
<td>24hr Urine (dL/24hr)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>surice_ca</td>
<td>Serum:Uric Acid (mg/dL) (c)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>Serum:HD (mg/dL) (c)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>Serum:LDL (mg/dL) (c)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>albe_ca</td>
<td>Urine:Albumin Excr (mg/24hr) (c)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ecitre_ca</td>
<td>Urine:Citrate Excr (mg/24hr) (c)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>esode_cc</td>
<td>Urine:Sodium Excr (mEq/24h) (c)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>xbdvdate</td>
<td>Visit/Date</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>cic</td>
<td>Correct Iothalamate Clear # 10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>bsa_c</td>
<td>BSA (c)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>hdyn</td>
<td>Hypertension yes/no # 12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>bmi_c</td>
<td>BMI (c)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>Age of participant</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>MDRD GFR</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>mrskvs</td>
<td>MR K Vol/Sum Ster</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>mrrcvv</td>
<td>MR C Vol/Sum Reg</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>visc</td>
<td>Relative Visit</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>mrctps</td>
<td>Percent MR Cyst Vol</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>lmrskvs</td>
<td>Log10 MR K Vol/Sum Ster</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>lmrrevs</td>
<td>Log10 MR C Vol/Sum Reg</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>Log10 Urine:Albumin Excr (mg/24hr) (c)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>lecitre_ca</td>
<td>Log10 Urine:Citrate Excr (mg/24hr) (c)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>lMDRD_GFR</td>
<td>Log10 MDRD GFR</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>lrbf</td>
<td>Log10 Renal Blood Flow Corrected for BSA</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>lrvr</td>
<td>Log10 RVR corrected for BSA</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>lrpf</td>
<td>Log10 Remal Plasma Flow</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>lff</td>
<td>Log10 Filtration Fraction</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>race</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>sex</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ind1_cic</td>
<td>CIC < or >= 100?</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ind2_cic</td>
<td>CIC < or >= 85?</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>genotype</td>
<td>Gene Type</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Avgsystol</td>
<td>Average Systolic BP over years</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Avgdiastol</td>
<td>Average Diastolic BP over years</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>2</td>
<td>Female Male</td>
</tr>
<tr>
<td>hdyn</td>
<td>2</td>
<td>N Y</td>
</tr>
</tbody>
</table>

Number of observations 131

NOTE: Due to missing values, only 107 observations can be used in this analysis.
The GLM Procedure

Dependent Variable: slope

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Error</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>106</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coeff Var</th>
<th>Root MSE</th>
<th>slope Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000000</td>
<td>.</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>hdyn</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>lrbf</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>bsa_c</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>MDRD_gfr</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>urine24_c</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>esode_cc</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>lalbe_ca</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>lpldle_ca</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>lphdle_ca</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>surice_ca</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-------------|----------|----------------|---------|------|-----|
| Intercept | 0 | B | 0 | . | . |
| sex Female | 0 | B | 0 | . | . |
| sex Male | 0 | B | . | . | . |
| hdyn N | 0 | B | 0 | . | . |
| hdyn Y | 0 | B | . | . | . |
| age | 0 | 0 | . | . | . |
| lrbf | 0 | 0 | . | . | . |
| bsa_c | 0 | 0 | . | . | . |
| MDRD_gfr | 0 | 0 | . | . | . |
| urine24_c | 0 | 0 | . | . | . |
| esode_cc | 0 | 0 | . | . | . |
| lalbe_ca | 0 | 0 | . | . | . |
The GLM Procedure

Dependent Variable: slope

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|------------|----------|----------------|---------|------|-----|
| lpdlle_ca | 0 | 0 | . | . |
| lpdhle_ca | 0 | 0 | . | . |
| surice_ca | 0 | 0 | . | . |

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>15</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>16</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>17</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>18</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>19</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>20</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>21</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>22</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>25</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>26</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>27</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>28</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>29</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>30</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>31</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>32</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>33</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>34</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>36</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>37</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>39</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>40</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>41</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>42</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>43</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>45</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>46</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>47</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>48</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>49</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>50</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>51</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>52</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>53</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>54</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>55</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>56</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>57</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>59</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>60</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>61</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>62</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>63</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>64</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>65</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>66</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>67</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>68</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>69</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>70</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>72</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>73</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>74</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>76</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>78</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>79</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>80</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>81</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>84</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>85</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>86</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>87</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>89</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>90</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>91</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>93</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>94</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>96</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>97</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>98</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>99</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>100</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>101</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>102</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>103</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>105</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>106</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>107</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>109</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GLM Procedure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Observed</th>
<th>Predicted</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>114</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>115</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>118</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>119</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>120</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>121</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>122</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>124</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>125</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>127</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>128</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>130</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

* Observation was not used in this analysis

<table>
<thead>
<tr>
<th>Sum of Residuals</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Squared Residuals</td>
<td>0</td>
</tr>
<tr>
<td>Sum of Squared Residuals - Error SS</td>
<td>0</td>
</tr>
<tr>
<td>First Order Autocorrelation</td>
<td>0</td>
</tr>
<tr>
<td>Durbin-Watson D</td>
<td>0</td>
</tr>
</tbody>
</table>